

States of Matter

Solid
Holds Shape

Fixed Volume

Liquid

Shape of Container
Free Surface
Fixed Volume

Gas
Shape of Container
Volume of Container

- jntermolecular forces

Intramolecular forces are attractive forces between molecules.
They hold atoms together in a molecule.

INTERMOLECULAR Vs INTRAMOLECULAR

- 41 KJ to vaporize 1 mole of water (inter)
E. 930 KJ to break all $0-\mathrm{H}$ bonds in 1 mole of water (intra)

Measure of intermolecular force boiling point melting point
Δ Hvap
Δ Hsub
Δ Hfus

Nonbonding (Intermolecular)

Ion-dipole

H bond

40-600 dipole charge

Dipole charges

$$
5-25
$$

Ion chargepolarizable e^{-} cloud

Dipole chargepolarizable e^{-} cloud

Polarizable e^{-} clouds
Ion charge-0.05-40

$$
\begin{array}{ccc}
\delta^{-} \delta^{+} & \delta^{-} \\
-\mathrm{A}-\mathrm{H} \cdot \cdots \cdots: \mathrm{B}-
\end{array} \quad \begin{aligned}
& \text { Polar bond to } \mathrm{H}- \\
& \\
& \\
& \\
& \text { dipole charge } \\
& \text { (high EN of N, O, F) }
\end{aligned}
$$

Ion-induced dipole

Dipole-induced dipole
(London)

$F-F \cdots F-F$

BOYLE'S LAW

CHARLE'S LAW (Temperature - Volume Relationship)

Charle's Law states that pressure remaining constant, the valume of a fixed mass of a gas is directly proportional to it's alsolute temperature.

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

- AVAGADRO LAW (Volume - Amount Relationship)

It states that equal volumes of all gases under the same conditions of temperature and pressure contain equal number of molecules.
$\frac{v_{1}}{n_{1}}=\frac{v_{2}}{n_{2}}$

MOLAR VOLUME OF GAS UNDER DIFF. CONDITIONS:

1. When STP is taken as 273 K and 1atm the molar volume is 22.4 L
2. When STP is taken as 273 K and 1 bar the molar volume is 22.7 L ($1 \mathrm{Bar}=0.987 \mathrm{~atm}$)
3. When SATP conditions are used i.e. 298 K and 1 bar the molar volume is 24.8 L

- DALTON'S LAW OF PARTJAL PRESSURE

This law states that the tatal pressure exerted by the mixture of non-reactive gases is equal ta the sum of the partial pressures of individual gases.

$$
P_{\text {total }}=P_{1}+P_{2}+\cdots=\sum P_{2}
$$

$$
\left(P_{1}\right)=\frac{\text { Number of moles of the gas }\left(n_{1}\right) \times P_{\text {Total }}}{\text { Total number of moles }(n) \text { in the mixture }}=\text { Mole fraction }\left(X_{1}\right) \times P_{\text {Total }}
$$

- jdear gas cquatjon

Ideal gas equation is a relation between four variaties and it describes the state of any gas, therefore, it is alsa called equation of state.

Starting with the three gas laws...
$\mathrm{P} \propto 1 / \mathrm{V} \quad \mathrm{V} \propto \mathrm{T} \quad$ V $\propto \mathrm{n}$
Therefore, using the Laws of Proportionality
$\mathrm{PV}=\mathrm{C}_{\mathrm{B}} \quad \mathrm{V} / \mathrm{T}=\mathrm{C}_{\mathrm{C}} \quad \mathrm{V} / \mathrm{n}=\mathrm{C}_{\mathrm{A}} \quad(\mathrm{C}$ is some constant)
Using Algebraic Substitution $\mathrm{PV} / \mathrm{nT}=\mathrm{R} \quad(\mathrm{R}$ is combination of 3 constants) $\therefore \mathrm{PV}=\mathrm{nRT}$

Combined gas Iaw

- KJNETJE MOLECULAR THEORY ON GASES

The Assumptions of Kinetic Molecular Theory:

इГ ${ }^{5}$ gas is compased of particles in constant motion.
5 The average kinetic energy depends an temperature, the higher the temperature, the figher the Finetic energy and the faster the particles are mouing.
『 Compared to the space through which they travel, the particles that make up the gas are sa small that their uolume can be ignared.
푁 The indiuidual particles are neither attracted ta ane another nor da they repel ane anather.
इW When particles callide with ane anather (ar the walls of the cantainer) they bounce rather than stick. These collisians are elastic; if ane particle gains kinetic energy anather lases kinetic energy sa that the auerage remains constant.

1

$$
: \quad 1.128 \quad: \quad 1.224
$$

- behavjour of real gases : devjatjon FROM JDEAL GAS BEHAVJOUR

A gas which obeys the gas laws and the gas equation $\mathrm{PV}=\mathrm{nRT}$ strictly at all temperatures and pressures is said to be an ideal gas. The molecules of ideal gases are assumed to be volume less points with no attractive forces between one another. But no real gas strictly obeys the gas equation at all temperatures and pressures. Deviations from ideal behaviour are observed particularly at high pressures or low temperatures. The deviation from ideal behaviour is expressed by introducing a factor \mathbf{Z} known as compressibility factor in the ideal gas equation. \mathbf{Z} may be expressed as Z $=\mathbf{P V} /$ nRT

- In case of ideal gas, $\mathrm{PV}=\mathrm{nRT}$ so, $\mathrm{Z}=\mathbf{1}$
- In case of real gas, $\mathrm{PV} \neq \mathrm{nRt}$ so, $\mathrm{Z} \neq 1$ Thus in case of real gases Z can be <1 or > 1
(i) When $\mathrm{Z}<1$, it is a negative deviation. It shows that the gas is more compressible than expected from ideal behaviour.
(ii) When Z > 1, it is a positive deviation. It shows that the gas is less compressible than expected from ideal behaviour.

Causes of deviation from ideal behaviour

The causes of deviations from ideal behaviour may be due to the following twe assumptions of kinetic theory of gases. There are
© She valume accupied by gas malecules is negligibly small as campared to the volume accupied by the gas.
© The forces of attraction between gas malecules are negligible.

- van der waAls equatjon

Atoms and molecules are never truly ideal because they all interact with ether gas particles; weak attractions between separate gas particles are known as intermalecular attractions ar wan der Waals farces after the chemist whe propased a correction to the ideal gas lau to calculate pressure of a real gas. Van der Waals propased that the ideal gas equation could be corrected for real gas behavior by sultracting the effective gas particle volume from the volume of the container and by carrecting for intermalecular attractions:

$$
\begin{aligned}
& P V=n R T \\
& (P+\text { attractions })(V-\text { gasVolums })=n R T \\
& \left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
\end{aligned}
$$

SIGNIFICANCE OF VAN DER WAALS CONSTANTS

* The value of constant "a" is measure of magnitude of attractive forces among the molecules of the gas. Its units are atm litre ${ }^{2} /$ mole 2
The value of constant " b " is measure of the effective size of the molecules of the gas. Its units are litre/mole.

LIQUEFACTION OF GASES

Andrew's Experiments

CRITICAL TEMPRATURE AND PRESSURE

- Two important properties of gases are important in developing methods for their liquefaction: critical temperature and critical pressure.
- The highest temperature at which a substance can exist as a liquid, is called its critical
temperature (Tc).There is corresponding pressure which is requires to bring about liquification at this critical temprature called
- For example, the critical temperature for carbon diunde is 304 K ($87.8 \mathrm{~F}[31 \mathrm{C}]$). That means that no amount of pressure applied to a sample of carbon dioxide gas at or above 304 K (87.8 F [31 C]) will cause the gas to liquefy. At or below that temperature, however, the gas can be liquefied provided sufficient pressure is applied. The corresponding critical pressure for carbon dioxide at 304 K (87.8 F [31 C]) is 72.9 atmospheres. In other words, the application of a pressure of 72.9 atmospheres of pressure on a sample of carbon dioxide gas at 304K (87.8 F [31 C]) will cause the gas to liquefy.
- Differences in critical temperatures among gases means that some gases are easier to liquefy than are others. The critical temperature of carbon dioxide is high enough so that it can be liquefied relatively easily at or near room temperature. By comparison, the critical temperature of nitrogen gas is $126 \mathrm{~K}(-232.6 \mathrm{~F}$ [$147 \mathrm{C}])$ and that of helium is $5.3 \mathrm{~K}(-449.9 \mathrm{~F}$ [267.7 C]). Liquefying gases such as nitrogen and helium obviously present much greater difficulties than does the liquefaction of carbon dioxide.

Gas	$P_{0}, \mathrm{~atm}$	$V_{0,} \mathrm{~cm}^{3} \mathrm{~mol}{ }^{-1}$	$T_{0} K$	$Z_{0}=\frac{P_{0} V_{c}}{n R \bar{T}_{0}}$
He	2.3	57.8	5.3	0.306
H_{2}	12.8	65.0	33.2	0.304
Ne	26.9	41.7	44.4	0.302
$\mathrm{~N}_{2}$	33.6	90.1	126.1	0.291
O_{2}	50.3	74.4	154.5	0.302
CO_{2}	72.7	95.0	304.2	0.275
$\mathrm{H}_{2} \mathrm{O}$	218.0	55.6	647.3	0.227
NH_{3}	112.0	72.0	405.5	0.243
CH_{4}	45.8	99.0	191.0	0.290
$\mathrm{C}_{2} \mathrm{H}_{6}$	48.2	139.0	305.5	0.267
$\mathrm{C}_{2} \mathrm{H}_{4}$	50.5	124.0	417.2	0.275

Q1) 28gm of each of the following gases are taken at 300 K and 600 mm pressure. Which of these will have least volume?

- A) HBr
- B) HCl
- C) HF
- D)HI

Q2) By what factor does the avg. velocity of a gaseous molecule inc. when absolute temperature is doubled.

- A)1.4
- B)2
- C)2.8
- D)4

Q3) Dipole-induced dipole interactions are present in which of the following pairs?

- A)Water and Alcohol
- B)Chlorine and Carbon Tetrachloride
- C)Hydrogen Chloride and Helium
- D)Silicon Tetra fluoride and Helium.

THANK YOU

For any queries mail at:
mkapil_foru@yahoo.com

