Chapter

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

5.1 Overview

We know that the square of a real number is always non-negative e.g. $(4)^{2}=16$ and $(-4)^{2}=16$. Therefore, square root of 16 is ± 4. What about the square root of a negative number? It is clear that a negative number can not have a real square root. So we need to extend the system of real numbers to a system in which we can find out the square roots of negative numbers. Euler (1707-1783) was the first mathematician to introduce the symbol i (iota) for positive square root of -1 i.e., $i=\sqrt{-1}$.

5.1.1 Imaginary numbers

Square root of a negative number is called an imaginary number., for example,

$$
\sqrt{-9}=\sqrt{-1} \sqrt{9}=i 3, \sqrt{-7}=\sqrt{-1} \sqrt{7}=i \sqrt{7}
$$

5.1.2 Integral powers of i

$i=\sqrt{-1}, i^{2}=-1, i^{3}=i^{2} i=-i, i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$.
To compute i^{n} for $n>4$, we divide n by 4 and write it in the form $n=4 m+r$, where m is quotient and r is remainder $(0 \leq r \leq 4)$
Hence

$$
i^{n}=i^{4 m+r}=\left(i^{4}\right)^{m} \cdot(i)^{r}=(1)^{m}(i)^{r}=i^{r}
$$

For example,

$$
(i)^{39}=i^{4 \times 9+3}=\left(i^{4}\right)^{9} \cdot(i)^{3}=i^{3}=-i
$$

and

$$
(i)^{-435}=i-(4 \times 108+3)=(i)^{-(4 \times 108)} \cdot(i)^{-3}
$$

$$
=\frac{1}{\left(i^{4}\right)^{108}} \cdot \frac{1}{(i)^{3}}=\frac{i}{(i)^{4}}=i
$$

(i) If a and b are positive real numbers, then

$$
\sqrt{-a} \times \sqrt{-b}=\sqrt{-1} \sqrt{a} \times \sqrt{-1} \sqrt{b}=i \sqrt{a} \times i \sqrt{b}=-\sqrt{a b}
$$

(ii) $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$ if a and b are positive or at least one of them is negative or zero. However, $\sqrt{a} \sqrt{b} \neq \sqrt{a b}$ if a and b, both are negative.

5.1.3 Complex numbers

(a) A number which can be written in the form $a+i b$, where a, b are real numbers and $i=\sqrt{-1}$ is called a complex number.
(b) If $z=a+i b$ is the complex number, then a and b are called real and imaginary parts, respectively, of the complex number and written as $\operatorname{Re}(z)=a, \operatorname{Im}(z)=b$.
(c) Order relations "greater than" and "less than" are not defined for complex numbers.
(d) If the imaginary part of a complex number is zero, then the complex number is known as purely real number and if real part is zero, then it is called purely imaginary number, for example, 2 is a purely real number because its imaginary part is zero and $3 i$ is a purely imaginary number because its real part is zero.

5.1.4 Algebra of complex numbers

(a) Two complex numbers $z_{1}=a+i b$ and $z_{2}=c+i d$ are said to be equal if $a=c$ and $b=d$.
(b) Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be two complex numbers then $z_{1}+z_{2}=(a+c)+i(b+d)$.

5.1.5 Addition of complex numbers satisfies the following properties

1. As the sum of two complex numbers is again a complex number, the set of complex numbers is closed with respect to addition.
2. Addition of complex numbers is commutative, i.e., $z_{1}+z_{2}=z_{2}+z_{1}$
3. Addition of complex numbers is associative, i.e., $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$
4. For any complex number $z=x+i y$, there exist 0 , i.e., $(0+0 i)$ complex number such that $z+0=0+z=z$, known as identity element for addition.
5. For any complex number $z=x+i y$, there always exists a number $-z=-a-i b$ such that $z+(-z)=(-z)+z=0$ and is known as the additive inverse of z.

5.1.6 Multiplication of complex numbers

Let $z_{1}=a+i b$ and $z_{2}=c+i d$, be two complex numbers. Then
$z_{1} \cdot z_{2}=(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$

1. As the product of two complex numbers is a complex number, the set of complex numbers is closed with respect to multiplication.
2. Multiplication of complex numbers is commutative, i.e., $z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$
3. Multiplication of complex numbers is associative, i.e., $\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)$
4. For any complex number $z=x+i y$, there exists a complex number 1 , i.e., $(1+0 i)$ such that
$z .1=1 . z=z$, known as identity element for multiplication.
5. For any non zero complex number $z=x+i y$, there exists a complex number $\frac{1}{z}$ such that $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$, i.e., multiplicative inverse of $a+i b=\frac{1}{a+i b}=\frac{a-i b}{a^{2}+b^{2}}$.
6. For any three complex numbers z_{1}, z_{2} and z_{3},

$$
\begin{aligned}
& z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3} \\
& \left(z_{1}+z_{2}\right) \cdot z_{3}=z_{1} \cdot z_{3}+z_{2} \cdot z_{3}
\end{aligned}
$$

i.e., for complex numbers multiplication is distributive over addition.
5.1.7 Let $z_{1}=a+i b$ and $z_{2}(\neq 0)=c+i d$. Then

$$
z_{1} \div z_{2}=\frac{z_{1}}{z_{2}}=\frac{a+i b}{c+i d}=\frac{(a c+b d)}{c^{2}+d^{2}}+i \frac{(b c-a d)}{c^{2}+d^{2}}
$$

5.1.8 Conjugate of a complex number

Let $z=a+i b$ be a complex number. Then a complex number obtained by changing the sign of imaginary part of the complex number is called the conjugate of z and it is denoted by \bar{z}, i.e., $\bar{z}=a-i b$.
Note that additive inverse of z is $-a-i b$ but conjugate of z is $a-i b$.
We have :

1. $\overline{(\bar{Z}})=Z$
2. $z+\bar{z}=2 \operatorname{Re}(z), z-\bar{Z}=2 i \operatorname{Im}(z)$
3. $z=\bar{z}$, if z is purely real.
4. $z+\bar{z}=0 \Leftrightarrow z$ is purely imaginary
5. $z . \bar{Z}=\{\operatorname{Re}(z)\}^{2}+\{\operatorname{Im}(z)\}^{2}$.
6. $\left(\overline{z_{1}+z_{2}}\right)=\bar{z}_{1}+\bar{z}_{2},\left(\overline{z_{1}-z_{2}}\right)=\bar{z}_{1}-\bar{z}_{2}$
7. $\left(\overline{z_{1} \cdot z_{2}}\right)=\left(\bar{z}_{1}\right)\left(\bar{z}_{2}\right), \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\left(\bar{z}_{1}\right)}{\left(\bar{z}_{2}\right)}\left(\bar{z}_{2} \neq 0\right)$

5.1.9 Modulus of a complex number

Let $z=a+i b$ be a complex number. Then the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute value) of z and it is denoted by $|z|$ i.e., $|z|=\sqrt{a^{2}+b^{2}}$

In the set of complex numbers $z_{1}>z_{2}$ or $z_{1}<z_{2}$ are meaningless but

$$
\left|z_{1}\right|>\left|z_{2}\right| \text { or }\left|z_{1}\right|<\left|z_{2}\right|
$$

are meaningful because $\left|z_{1}\right|$ and $\left|z_{2}\right|$ are real numbers.

5.1.10 Properties of modulus of a complex number

1. $|z|=0 \Leftrightarrow z=0$ i.e., $\operatorname{Re}(z)=0$ and $\operatorname{Im}(z)=0$
2. $|z|=|\bar{z}|=|-z|$
3. $-|z| \leq \operatorname{Re}(z) \leq|z|$ and $-|z| \leq \operatorname{Im}(z) \leq|z|$
4. $z \bar{z}=|z|^{2},\left|z^{2}\right|=|\bar{z}|^{2}$
5. $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|,\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left(z_{2} \neq 0\right)$
6. $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
7. $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
8. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
9. $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
10. $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$

In particular:

$$
\left|z_{1}-z_{2}\right|^{2}+\left|z_{1}+z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

11. As stated earlier multiplicative inverse (reciprocal) of a complex number $z=a+i b(\neq 0)$ is

$$
\frac{1}{z}=\frac{a-i b}{a^{2}+b^{2}}=\frac{\bar{z}}{|z|^{2}}
$$

5.2 Argand Plane

A complex number $z=a+i b$ can be represented by a unique point $\mathrm{P}(a, b)$ in the cartesian plane referred to a pair of rectangular axes. The complex number $0+0 i$ represent the origin $0(0,0)$. A purely real number a, i.e., $(a+0 i)$ is represented by the point $(a, 0)$ on x-axis. Therefore, x-axis is called real axis. Apurely imaginary number
$i b$, i.e., $(0+i b)$ is represented by the point $(0, b)$ on y-axis. Therefore, y-axis is called imaginary axis.

Similarly, the representation of complex numbers as points in the plane is known as Argand diagram. The plane representing complex numbers as points is called complex plane or Argand plane or Gaussian plane.
If two complex numbers z_{1} and z_{2} be represented by the points P and Q in the complex plane, then

$$
\left|z_{1}-z_{2}\right|=\mathrm{PQ}
$$

5.2.1 Polar form of a complex number

Let P be a point representing a non-zero complex number $z=a+i b$ in the Argand plane. If OP makes an angle θ with the positive direction of x-axis, then $z=r(\cos \theta+i \sin \theta)$ is called the polar form of the complex number, where $r=|z|=\sqrt{a^{2}+b^{2}}$ and $\tan \theta=\frac{b}{a}$. Here θ is called argument or amplitude of z and we write it as $\arg (z)=\theta$.
The unique value of θ such that $-\pi \leq \theta \leq \pi$ is called the principal argument.

$$
\begin{aligned}
\arg \left(z_{1} \cdot z_{2}\right) & =\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \\
\arg \left(\frac{z_{1}}{z_{2}}\right) & =\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

5.2.2 Solution of a quadratic equation

The equations $a x^{2}+b x+c=0$, where a, b and c are numbers (real or complex, $a \neq 0$) is called the general quadratic equation in variable x. The values of the variable satisfying the given equation are called roots of the equation.

The quadratic equation $a x^{2}+b x+c=0$ with real coefficients has two roots given by $\frac{-b+\sqrt{\mathrm{D}}}{2 a}$ and $\frac{-b-\sqrt{\mathrm{D}}}{2 a}$, where $\mathrm{D}=b^{2}-4 a c$, called the discriminant of the equation. Notes

1. When $\mathrm{D}=0$, roots of the quadratic equation are real and equal. When $\mathrm{D}>0$, roots are real and unequal.
Further, if $a, b, c \in \mathbf{Q}$ and D is a perfect square, then the roots of the equation are rational and unequal, and if $a, b, c \in \mathbf{Q}$ and D is not a perfect square, then the roots are irrational and occur in pair.

When $\mathrm{D}<0$, roots of the quadratic equation are non real (or complex).
2. Let α, β be the roots of the quadratic equation $a x^{2}+b x+c=0$, then sum of the roots
$(\alpha+\beta)=\frac{-b}{a}$ and the product of the roots $(\alpha, \beta)=\frac{c}{a}$.
3. Let S and P be the sum of roots and product of roots, respectively, of a quadratic equation. Then the quadratic equation is given by $x^{2}-\mathrm{S} x+\mathrm{P}=0$.

5.2 Solved Exmaples

Short Answer Type

Example 1 Evaluate : $(1+i)^{6}+(1-i)^{3}$
Solution $(1+i)^{6}=\left\{(1+i)^{2}\right\}^{3}=\left(1+i^{2}+2 i\right)^{3}=(1-1+2 i)^{3}=8 i^{3}=-8 i$
and

$$
(1-i)^{3}=1-i^{3}-3 i+3 i^{2}=1+i-3 i-3=-2-2 i
$$

Therefore,

$$
(1+i)^{6}+(1-i)^{3}=-8 i-2-2 i=-2-10 i
$$

Example 2 If $(x+i y)^{\frac{1}{3}}=a+i b$, where $x, y, a, b \in \mathrm{R}$, show that $\frac{x}{a}-\frac{y}{b}=-2\left(a^{2}+b^{2}\right)$
Solution $(x+i y)^{\frac{1}{3}}=a+i b$
$\Rightarrow \quad x+i y=(a+i b)^{3}$
i.e., $\quad x+i y=a^{3}+i^{3} b^{3}+3 i a b(a+i b)$
$=a^{3}-i b^{3}+i 3 a^{2} b-3 a b^{2}$
$=a^{3}-3 a b^{2}+i\left(3 a^{2} b-b^{3}\right)$
$\Rightarrow \quad x=a^{3}-3 a b^{2}$ and $y=3 a^{2} b-b^{3}$
Thus $\quad \frac{x}{a}=a^{2}-3 b^{2}$ and $\frac{y}{b}=3 a^{2}-b^{2}$

So,

$$
\frac{x}{a}-\frac{y}{b}=a^{2}-3 b^{2}-3 a^{2}+b^{2}=-2 a^{2}-2 b^{2}=-2\left(a^{2}+b^{2}\right)
$$

Example 3 Solve the equation $z^{2}=\bar{Z}$, where $z=x+i y$
Solution $z^{2}=\bar{Z} \quad \Rightarrow x^{2}-y^{2}+i 2 x y=x-i y$
Therefore, $x^{2}-y^{2}=x \quad \ldots$ (1) and $2 x y=-y$

From (2), we have $y=0$ or $x=-\frac{1}{2}$
When $y=0$, from (1), we get $x^{2}-x=0$, i.e., $x=0$ or $x=1$.
When $x=-\frac{1}{2}$, from (1), we get $y^{2}=\frac{1}{4}+\frac{1}{2} \quad$ or $y^{2}=\frac{3}{4}$, i.e., $y= \pm \frac{\sqrt{3}}{2}$.
Hence, the solutions of the given equation are

$$
0+i 0,1+i 0,-\frac{1}{2}+i \frac{\sqrt{3}}{2},-\frac{1}{2}-i \frac{\sqrt{3}}{2} .
$$

Example 4 If the imaginary part of $\frac{2 z+1}{i z+1}$ is -2 , then show that the locus of the point representing z in the argand plane is a straight line.

Solution Let $z=x+i y$. Then

$$
\begin{aligned}
\frac{2 z+1}{i z+1} & =\frac{2(x+i y)+1}{i(x+i y)+1}=\frac{(2 x+1)+i 2 y}{(1-y)+i x} \\
& =\frac{\{(2 x+1)+i 2 y\}}{\{(1-y)+i x\}} \times \frac{\{(1-y)-i x\}}{\{(1-y)-i x\}} \\
& =\frac{(2 x+1-y)+i\left(2 y-2 y^{2}-2 x^{2}-x\right)}{1+y^{2}-2 y+x^{2}}
\end{aligned}
$$

Thus

$$
\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=\frac{2 y-2 y^{2}-2 x^{2}-x}{1+y^{2}-2 y+x^{2}}
$$

But

$$
\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2 \quad \text { (Given) }
$$

$$
\frac{2 y-2 y^{2}-2 x^{2}-x}{1+y^{2}-2 y+x^{2}}=-2
$$

$\Rightarrow \quad 2 y-2 y^{2}-2 x^{2}-x=-2-2 y^{2}+4 y-2 x^{2}$
i.e., $\quad x+2 y-2=0$, which is the equation of a line.

Example 5 If $\left|z^{2}-1\right|=|z|^{2}+1$, then show that z lies on imaginary axis.
Solution Let $z=x+i y$. Then $\left|z^{2}-1\right|=|z|^{2}+1$
$\Rightarrow \quad\left|x^{2}-y^{2}-1+i 2 x y\right|=|x+i y|^{2}+1$
$\begin{array}{ll}\Rightarrow & \left(x^{2}-y^{2}-1\right)^{2}+4 x^{2} y^{2}=\left(x^{2}+y^{2}+1\right)^{2} \\ \Rightarrow & 4 x^{2}=0\end{array}$
Hence z lies on y-axis.
Example 6 Let z_{1} and z_{2} be two complex numbers such that $\bar{z}_{1}+i \bar{z}_{2}=0$ and $\arg \left(z_{1} z_{2}\right)=\pi$. Then find $\arg \left(z_{1}\right)$.

Solution Given that $\bar{z}_{1}+i \bar{z}_{2}=0$
$\Rightarrow \quad z_{1}=i z_{2}$, i.e., $z_{2}=-i z_{1}$
Thus $\quad \arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg \left(-i z_{1}\right)=\pi$
$\Rightarrow \quad \arg \left(-i z_{1}^{2}\right)=\pi$
$\Rightarrow \quad \arg (-i)+\arg \left(z_{1}^{2}\right)=\pi$
$\Rightarrow \quad \arg (-i)+2 \arg \left(z_{1}\right)=\pi$
$\Rightarrow \quad \frac{-\pi}{2}+2 \arg \left(z_{1}\right)=\pi$
$\Rightarrow \quad \arg \left(z_{1}\right)=\frac{3 \pi}{4}$
Example 7 Let z_{1} and z_{2} be two complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$.
Then show that $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$.
Solution Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$
where $\quad r_{1}=\left|z_{1}\right|, \arg \left(z_{1}\right)=\theta_{1}, r_{2}=\left|z_{2}\right|, \arg \left(z_{2}\right)=\theta_{2}$.
We have, $\quad\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$

$$
\begin{aligned}
& =\left|r_{1}\left(\cos \theta_{1}+\cos \theta_{2}\right)+r_{2}\left(\cos \theta_{2}+\sin \theta_{2}\right)\right|=r_{1}+r_{2} \\
& =r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)=\left(r_{1}+r_{2}\right)^{2} \Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=1 \\
& \Rightarrow \theta_{1}-\theta_{2} \text { i.e. } \arg z_{1}=\arg z_{2}
\end{aligned}
$$

Example 8 If z_{1}, z_{2}, z_{3} are complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$, then find the value of $\left|z_{1}+z_{2}+z_{3}\right|$.
Solution $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$

$$
\begin{array}{ll}
\Rightarrow & \left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=\left|z_{3}\right|^{2}=1 \\
\Rightarrow & z_{1} \bar{z}_{1}=z_{2} \bar{z}_{2}=z_{3} \bar{z}_{3}=1 \\
\Rightarrow & \bar{z}_{1}=\frac{1}{z_{1}}, \bar{z}_{2}=\frac{1}{z_{2}}, \bar{z}_{3}=\frac{1}{z_{3}}
\end{array}
$$

Given that $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$
$\Rightarrow \quad\left|\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}\right|=1$, i.e., $\left|\overline{z_{1}+z_{2}+z_{3}}\right|=1$
$\Rightarrow \quad\left|z_{1}+z_{2}+z_{3}\right|=1$
Example 9 If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre $(-4,0)$, find the greatest and least values of $|z+1|$.

Solution Distance of the point representing z from the centre of the circle is $|z-(-4+i 0)|=|z+4|$.

According to given condition $|z+4| \leq 3$.
Now $|z+1|=|z+4-3| \leq|z+4|+|-3| \leq 3+3=6$
Therefore, greatest value of $|z+1|$ is 6 .
Since least value of the modulus of a complex number is zero, the least value of $|z+1|=0$.

Example 10 Locate the points for which $3<|z|<4$
Solution $|z|<4 \Rightarrow x^{2}+y^{2}<16$ which is the interior of circle with centre at origin and radius 4 units, and $|z|>3 \Rightarrow x^{2}+y^{2}>9$ which is exterior of circle with centre at origin and radius 3 units. Hence $3<|z|<4$ is the portion between two circles $x^{2}+y^{2}=9$ and $x^{2}+y^{2}=16$.
Example 11 Find the value of $2 x^{4}+5 x^{3}+7 x^{2}-x+41$, when $x=-2-\sqrt{3} i$
Solution $x+2=-\sqrt{3} i \Rightarrow x^{2}+4 x+7=0$
Therefore

$$
\begin{aligned}
2 x^{4}+5 x^{3}+7 x^{2}-x+41 & =\left(x^{2}+4 x+7\right)\left(2 x^{2}-3 x+5\right)+6 \\
& =0 \times\left(2 x^{2}-3 x+5\right)+6=6
\end{aligned}
$$

Example 12 Find the value of P such that the difference of the roots of the equation $x^{2}-\mathrm{Px}+8=0$ is 2 .
Solution Let α, β be the roots of the equation $x^{2}-\mathrm{P} x+8=0$
Therefore $\quad \alpha+\beta=P$ and $\alpha . \beta=8$.
Now

$$
\alpha-\beta= \pm \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}
$$

Therefore $\quad 2= \pm \sqrt{\mathrm{P}^{2}-32}$
$\Rightarrow \quad P^{2}-32=4$, i.e., $P= \pm 6$.
Example 13 Find the value of a such that the sum of the squares of the roots of the equation $x^{2}-(a-2) x-(a+1)=0$ is least.
Solution Let α, β be the roots of the equation
Therefore, $\quad \alpha+\beta=a-2$ and $\alpha \beta=-(a+1)$
Now

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(a-2)^{2}+2(a+1) \\
& =(a-1)^{2}+5
\end{aligned}
$$

Therefore, $\quad \alpha^{2}+\beta^{2}$ will be minimum if $(a-1)^{2}=0$, i.e., $a=1$.

Long Answer Type

Example 14 Find the value of k if for the complex numbers z_{1} and z_{2},

$$
\left|1-\bar{z}_{1} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=k\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right)
$$

Solution

$$
\begin{aligned}
\text { L.H.S. } & =\left|1-\bar{z}_{1} z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2} \\
& =\left(1-\bar{z}_{1} z_{2}\right)\left(\overline{1-\bar{z}_{1} z_{2}}\right)-\left(z_{1}-z_{2}\right)\left(\overline{z_{1}-z_{2}}\right) \\
& =\left(1-\bar{z}_{1} z_{2}\right)\left(1-\bar{z}_{1} \bar{z}_{2}\right)-\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right) \\
& =1+z_{1} \bar{z}_{1} z_{2} \bar{z}_{2}-z_{1} \bar{z}_{1}-z_{2} \bar{z}_{2} \\
& =1+\left|z_{1}\right|^{2} \cdot\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2} \\
& =\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right) \\
\Rightarrow \quad \text { R.H.S. } & =k\left(1-\left|z_{1}\right|^{2}\right)\left(1-\left|z_{2}\right|^{2}\right) \\
\Rightarrow \quad k & =1
\end{aligned}
$$

Hence, equating LHS and RHS, we get $k=1$.
Example 15 If z_{1} and z_{2} both satisfy $z+\bar{z}=2|z-1| \arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}$, then find $\operatorname{Im}\left(z_{1}+z_{2}\right)$.

Solution Let $z=x+i y, z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$.
Then $\quad z+\bar{z}=2|z-1|$
$\Rightarrow \quad(x+i y)+(x-i y)=2|x-1+i y|$
$\Rightarrow \quad 2 x=1+y^{2}$
Since z_{1} and z_{2} both satisfy (1), we have
$\begin{array}{ll} & 2 x_{1}=1+y_{1}^{2} \ldots \text { and } 2 x_{2}=1+y_{2} \\ \Rightarrow \quad & 2\left(x_{1}-x_{2}\right)=\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)\end{array}$
$\Rightarrow \quad 2=\left(y_{1}+y_{2}\right)\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)$
Again

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)
$$

Therefore, $\tan \theta=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$, where $\theta=\arg \left(z_{1}-z_{2}\right)$

$$
\begin{array}{ll}
\Rightarrow & \tan \frac{\pi}{4}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\
\text { i.e., } & 1=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\end{array}
$$

From (2), we get $2=y_{1}+y_{2}$, i.e., $\operatorname{Im}\left(z_{1}+z_{2}\right)=2$

Objective Type Questions

Example 16 Fill in the blanks:
(i) The real value of ' a ' for which $3 i^{3}-2 a i^{2}+(1-a) i+5$ is real is \qquad .
(ii) If $|z|=2$ and $\arg (z)=\frac{\pi}{4}$, then $z=$ \qquad .
(iii) The locus of z satisfying $\arg (z)=\frac{\pi}{3}$ is \qquad .
(iv) The value of $(-\sqrt{-1})^{4 n-3}$, where $n \in \mathbf{N}$, is \qquad .
(v) The conjugate of the complex number $\frac{1-i}{1+i}$ is \qquad .
(vi) If a complex number lies in the third quadrant, then its conjugate lies in the \qquad -.
(vii) If $(2+i)(2+2 i)(2+3 i) \ldots(2+n i)=x+i y$, then $5.8 .13 \ldots\left(4+n^{2}\right)=$ \qquad .

Solution

(i) $3 i^{3}-2 a i^{2}+(1-a) i+5=-3 i+2 a+5+(1-a) i$
$=2 a+5+(-a-2) i$, which is real if $-a-2=0$ i.e. $a=-2$.
(ii) $z=|z|\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\sqrt{2}(1+i)$
(iii) Let $z=x+i y$. Then its polar form is $z=r(\cos \theta+i \sin \theta)$, where $\tan \theta=\frac{y}{x}$ and θ is $\arg (z)$. Given that $\theta=\frac{\pi}{3}$. Thus.
$\tan \frac{\pi}{3}=\frac{y}{x} \Rightarrow y=\sqrt{3} x$, where $x>0, y>0$.
Hence, locus of z is the part of $y=\sqrt{3} x$ in the first quadrant except origin.
(iv) Here $(-\sqrt{-1})^{4 n-3}=(-i)^{4 n-3}=(-i)^{4 n}(-i)^{-3}=\frac{1}{(-i)^{3}}$

$$
=\frac{1}{-i^{3}}=\frac{1}{i}=\frac{i}{i^{2}}=-i
$$

(v) $\frac{1-i}{1+i}=\frac{1-i}{1+i} \times \frac{1-i}{1-i}=\frac{1+i^{2}-2 i}{1-i^{2}}=\frac{1-1-2 i}{1+1}=-i$

Hence, conjugate of $\frac{1-i}{1+i}$ is i.
(vi) Conjugate of a complex number is the image of the complex number about the x-axis. Therefore, if a number lies in the third quadrant, then its image lies in the second quadrant.
(vii) Given that $(2+i)(2+2 i)(2+3 i) \ldots(2+n i)=x+i y$
$\Rightarrow \quad(\overline{2+i})(\overline{2+2 i})(\overline{2+3 i}) \ldots(\overline{2+n i})=(\overline{x+i y})=(x-i y)$
i.e., $\quad(2-i)(2-2 i)(2-3 i) \ldots(2-n i)=x-i y$

Multiplying (1) and (2), we get 5.8.13 $\ldots\left(4+n^{2}\right)=x^{2}+y^{2}$.
Example 17 State true or false for the following:
(i) Multiplication of a non-zero complex number by i rotates it through a right angle in the anti- clockwise direction.
(ii) The complex number $\cos \theta+i \sin \theta$ can be zero for some θ.
(iii) If a complex number coincides with its conjugate, then the number must lie on imaginary axis.
(iv) The argument of the complex number $z=(1+i \sqrt{3})(1+i)(\cos \theta+i \sin \theta)$ is $\frac{7 \pi}{12}+\theta$
(v) The points representing the complex number z for which $|z+1|<|z-1|$ lies in the interior of a circle.
(vi) If three complex numbers z_{1}, z_{2} and z_{3} are in A.P., then they lie on a circle in the complex plane.
(vii) If n is a positive integer, then the value of $i^{n}+(i)^{n+1}+(i)^{n+2}+(i)^{n+3}$ is 0 .

Solution

(i) True. Let $z=2+3 i$ be complex number represented by OP. Then $i z=-3+2 i$, represented by $O Q$, where if $O P$ is rotated in the anticlockwise direction through a right angle, it coincides with OQ.
(ii) False. Because $\cos \theta+i \sin \theta=0 \Rightarrow \cos \theta=0$ and $\sin \theta=0$. But there is no value of θ for which $\cos \theta$ and $\sin \theta$ both are zero.
(iii) False, because $x+i y=x-i y \Rightarrow y=0 \Rightarrow$ number lies on x-axis.
(iv) True, $\arg (z)=\arg (1+i \sqrt{3})+\arg (1+i)+\arg (\cos \theta+i \sin \theta)$ $\frac{\pi}{3}+\frac{\pi}{4}+\theta=\frac{7 \pi}{12}+\theta$
(v) False, because $|x+i y+1|<|x+i y-1|$
$\Rightarrow \quad(x+1)^{2}+y^{2}<(x-1)^{2}+y^{2}$ which gives $4 x<0$.
(vi) False, because if z_{1}, z_{2} and z_{3} are in A.P., then $z_{2}=\frac{z_{1}+z_{3}}{2} \Rightarrow z_{2}$ is the midpoint of z_{1} and z_{3}, which implies that the points z_{1}, z_{2}, z_{3} are collinear.
(vii) True, because $i^{n}+(i)^{n+1}+(i)^{n+2}+(i)^{n+3}$

$$
\begin{aligned}
& =i^{n}\left(1+i+i^{2}+i^{3}\right)=i^{n}(1+i-1-i) \\
& =i^{n}(0)=0
\end{aligned}
$$

Example 18 Match the statements of column A and B.

ColumnA

(a) The value of $1+i^{2}+i^{4}+i^{6}+\ldots i^{20}$ is
(b) The value of i^{-1097} is
(c) Conjugate of $1+i$ lies in
(d) $\frac{1+2 i}{1-i}$ lies in
(e) If $a, b, c \in \mathrm{R}$ and $b^{2}-4 a c<0$, then the roots of the equation $a x^{2}+b x+c=0$ are non real (complex) and
(f) If $a, b, c \in \mathrm{R}$ and $b^{2}-4 a c>0$, and $b^{2}-4 a c$ is a perfect square, then the roots of the equation $a x^{2}+b x+c=0$

Solution

(a) \Leftrightarrow (ii), because $1+i^{2}+i^{4}+i^{6}+\ldots+i^{20}$ $=1-1+1-1+\ldots+1=1$ (which is purely a real complex number)
(b) $\Leftrightarrow(\mathrm{i})$, because $i^{-1097}=\frac{1}{(i)^{1097}}=\frac{1}{i^{4 \times 274+1}}=\frac{1}{\left\{(i)^{4}\right\}^{274}(i)}=\frac{1}{i}=\frac{i}{i^{2}}=-i$ which is purely imaginary complex number.
(c) \Leftrightarrow (iv), conjugate of $1+i$ is $1-i$, which is represented by the point $(1,-1)$ in the fourth quadrant.
(d) \Leftrightarrow (iii), because $\frac{1+2 i}{1-i}=\frac{1+2 i}{1-i} \times \frac{1+i}{1+i}=\frac{-1+3 i}{2}=-\frac{1}{2}+\frac{3}{2} i$, which is represented by the point $\left(-\frac{1}{2}, \frac{3}{2}\right)$ in the second quadrant.
(e) \Leftrightarrow (vi), If $b^{2}-4 a c<0=\mathrm{D}<0$, i.e., square root of D is a imaginary number, therefore, roots are $x=\frac{-b \pm \text { Imaginary Number }}{2 a}$, i.e., roots are in conjugate pairs.
(f) $\Leftrightarrow(\mathrm{v})$, Consider the equation $x^{2}-(5+\sqrt{2}) x+5 \sqrt{2}=0$, where $a=1$, $b=-(5+\sqrt{2}), c=5 \sqrt{2}$, clearly $a, b, c \in \mathrm{R}$.

Now $\mathrm{D}=b^{2}-4 a c=\{-(5+\sqrt{2})\}^{2}-4.1 .5 \sqrt{2}=(5-\sqrt{2})^{2}$.
Therefore $x=\frac{5+\sqrt{2} \pm 5-\sqrt{2}}{2}=5, \sqrt{2}$ which do not form a conjugate pair.
Example 19 What is the value of $\frac{i^{4 n+1}-i^{4 n-1}}{2}$?
Solution i, because $\frac{i^{4 n+1}-i^{4 n-1}}{2}=\frac{i^{4 n} i-i^{4 n} i^{-i}}{2}$

$$
=\frac{i-\frac{1}{i}}{2}=\frac{i^{2}-1}{2 i}=\frac{-2}{2 i}=i
$$

Example 20 What is the smallest positive integer n, for which $(1+i)^{2 n}=(1-i)^{2 n}$?
Solution $n=2$, because $(1+i)^{2 n}=(1-i)^{2 n}=\left(\frac{1+i}{1-i}\right)^{2 n}=1$
\Rightarrow
$(i)^{2 n}=1$ which is possible if $n=2$
$\left(\therefore i^{4}=1\right)$

Example 21 What is the reciprocal of $3+\sqrt{7} i$
Solution Reciprocal of $z=\frac{\bar{Z}}{|z|^{2}}$
Therefore, reciprocal of $3+\sqrt{7} i=\frac{3-\sqrt{7} i}{16}=\frac{3}{16}-\frac{\sqrt{7} i}{16}$
Example 22 If $z_{1}=\sqrt{3}+i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$, then find the quadrant in which $\left(\frac{z_{1}}{z_{2}}\right)$ lies.
Solution $\frac{z_{1}}{z_{2}}=\frac{\sqrt{3}+i \sqrt{3}}{\sqrt{3}+i}=\left(\frac{3+\sqrt{3}}{4}\right)+\left(\frac{3-\sqrt{3}}{4}\right) i$
which is represented by a point in first quadrant.

Example 23 What is the conjugate of $\frac{\sqrt{5+12 i}+\sqrt{5-12 i}}{\sqrt{5+12 i}-\sqrt{5-12 i}}$?
Solution Let

$$
\begin{aligned}
z & =\frac{\sqrt{5+12 i}+\sqrt{5-12 i}}{\sqrt{5+12 i}-\sqrt{5-12 i}} \times \frac{\sqrt{5+12 i}+\sqrt{5-12 i}}{\sqrt{5+12 i}+\sqrt{5-12 i}} \\
& =\frac{5+12 i+5-12 i+2 \sqrt{25+144}}{5+12 i-5+12 i} \\
& =\frac{3}{2 i}=\frac{3 i}{-2}=0-\frac{3}{2} i
\end{aligned}
$$

Therefore, the conjugate of $z=0+\frac{3}{2} i$
Example 24 What is the principal value of amplitude of $1-i$?
Solution Let θ be the principle value of amplitude of $1-i$. Since

$$
\tan \theta=-1 \Rightarrow \tan \theta=\tan \left(-\frac{\pi}{4}\right) \Rightarrow \theta=-\frac{\pi}{4}
$$

Example 25 What is the polar form of the complex number $\left(i^{25}\right)^{3}$?
Solution $z=\left(i^{25}\right)^{3}=(i)^{75}=i^{4 \times 18+3}=\left(i^{4}\right)^{18}(i)^{3}$

$$
=i^{3}=-i=0-i
$$

Polar form of $z=r(\cos \theta+i \sin \theta)$

$$
\begin{aligned}
& =1\left\{\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right\} \\
& =\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}
\end{aligned}
$$

Example 26 What is the locus of z, if amplitude of $z-2-3 i$ is $\frac{\pi}{4}$?
Solution Let $z=x+i y$. Then $z-2-3 i=(x-2)+i(y-3)$
Let θ be the amplitude of $z-2-3 i$. Then $\tan \theta=\frac{y-3}{x-2}$
$\Rightarrow \quad \tan \frac{\pi}{4}=\frac{y-3}{x-2}\left(\operatorname{since} \theta=\frac{\pi}{4}\right)$
$\Rightarrow \quad 1=\frac{y-3}{x-2}$ i.e. $x-y+1=0$
Hence, the locus of z is a straight line.
Example 27 If $1-i$, is a root of the equation $x^{2}+a x+b=0$, where $a, b \in \mathbf{R}$, then find the values of a and b.

Solution Sum of roots $\frac{-a}{1}=(1-i)+(1+i) \Rightarrow a=-2$.
(since non real complex roots occur in conjugate pairs)
Product of roots, $\frac{b}{1}=(1-i)(1+i) \Rightarrow b=2$
Choose the correct options out of given four options in each of the Examples from 28 to 33 (M.C.Q.).

Example $281+i^{2}+i^{4}+i^{6}+\ldots+i^{2 n}$ is
(A) positive
(B) negative
(C) 0
(D) can not be evaluated

Solution (D), $1+i^{2}+i^{4}+i^{6}+\ldots+i^{2 n}=1-1+1-1+\ldots(-1)^{n}$
which can not be evaluated unless n is known.
Example 29 If the complex number $z=x+i y$ satisfies the condition $|z+1|=1$, then z lies on
(A) x-axis
(B) circle with centre $(1,0)$ and radius 1
(C) circle with centre $(-1,0)$ and radius 1
(D) y-axis

Solution (C), $|z+1|=1 \Rightarrow|(x+1)+i y|=1$
$\Rightarrow \quad(x+1)^{2}+y^{2}=1$
which is a circle with centre $(-1,0)$ and radius 1 .
Example 30 The area of the triangle on the complex plane formed by the complex numbers $z,-i z$ and $z+i z$ is:
(A) $|z|^{2}$
(B) $|\bar{z}|^{2}$
(C) $\frac{|z|^{2}}{2}$
(D) none of these

Solution (C), Let $z=x+i y$. Then $-i z=y-i x$. Therefore,

$$
z+i z=(x-y)+i(x+y)
$$

Required area of the triangle $=\frac{1}{2}\left(x^{2}+y^{2}\right)=\frac{|z|^{2}}{2}$
Example 31 The equation $|z+1-i|=|z-1+i|$ represents a
(A) straight line
(B) circle
(C) parabola
(D) hyperbola

Solution (A), $|z+1-i|=|z-1+i|$
$\Rightarrow \quad|z-(-1+i)|=|z-(1-i)|$
$\Rightarrow \quad \mathrm{PA}=\mathrm{PB}$, where A denotes the point $(-1,1), \mathrm{B}$ denotes the point $(1,-1)$ and P denotes the point (x, y)
$\Rightarrow \quad z$ lies on the perpendicular bisector of the line joining A and B and perpendicular bisector is a straight line.
Example 32 Number of solutions of the equation $z^{2}+|z|^{2}=0$ is
(A) 1
(B) 2
(C) 3
(D) infinitely many

Solution (D), $z^{2}+|z|^{2}=0, z \neq 0$
$\Rightarrow \quad x^{2}-y^{2}+i 2 x y+x^{2}+y^{2}=0$
$\Rightarrow \quad 2 x^{2}+i 2 x y=0 \Rightarrow 2 x(x+i y)=0$
$\Rightarrow \quad x=0 \quad$ or $x+i y=0($ not possible $)$
Therefore, $x=0$ and $z \neq 0$
So y can have any real value. Hence infinitely many solutions.
Example 33 The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is
(A) $\frac{2 \pi}{5}$
(B) $\frac{\pi}{5}$
(C) $\frac{\pi}{15}$
(D) $\frac{\pi}{10}$

Solution (D), Here $r \cos \theta=\sin \left(\frac{\pi}{5}\right)$ and $r \sin \theta=1-\cos \frac{\pi}{5}$

$$
\begin{array}{ll}
\text { Therefore, } & \tan \theta=\frac{1-\cos \frac{\pi}{5}}{\sin \frac{\pi}{5}}=\frac{2 \sin ^{2}\left(\frac{\pi}{10}\right)}{2 \sin \left(\frac{\pi}{10}\right) \cdot \cos \left(\frac{\pi}{10}\right)} \\
\Rightarrow \quad & \tan \theta=\tan \left(\frac{\pi}{10}\right) \text { i.e., } \theta=\frac{\pi}{10}
\end{array}
$$

5.3 EXERCISE

Short Answer Type

1. For a positive integer n, find the value of $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}$
2. Evaluate $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $n \in \mathbf{N}$.
3. If $\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}=x+i y$, then find (x, y).
4. If $\frac{(1+i)^{2}}{2-i}=x+i y$, then find the value of $x+y$.
5. If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then find (a, b).
6. If $a=\cos \theta+i \sin \theta$, find the value of $\frac{1+a}{1-a}$.
7. If $(1+i) z=(1-i) \bar{z}$, then show that $z=-i \bar{z}$.
8. If $z=x+i y$, then show that $z \bar{z}+2(z+\bar{z})+b=0$, where $b \in \mathbf{R}$, represents a circle.
9. If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4 , then show that the locus of the point representing z in the complex plane is a circle.
10. Show that the complex number z, satisfying the condition $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ lies on a circle.
11. Solve the equation $|z|=z+1+2 i$.

Long Answer Type

12. If $|z+1|=z+2(1+i)$, then find z.
13. If $\arg (z-1)=\arg (z+3 i)$, then find $x-1: y$. where $z=x+i y$
14. Show that $\left|\frac{z-2}{z-3}\right|=2$ represents a circle. Find its centre and radius.
15. If $\frac{z-1}{z+1}$ is a purely imaginary number $(z \neq-1)$, then find the value of $|z|$.
16. z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=$ π, then show that $z_{1}=-\bar{z}_{2}$.
17. If $\left|z_{1}\right|=1\left(z_{1} \neq-1\right)$ and $z_{2}=\frac{z_{1}-1}{z_{1}+1}$, then show that the real part of z_{2} is zero.
18. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, then find $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)$.
19. If $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, then
show that $\left|z_{1}+z_{2}+z_{3}+\ldots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}+\ldots+\frac{1}{z_{n}}\right|$.
20. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$, then show that $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|$
21. Solve the system of equations $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$.
22. Find the complex number satisfying the equation $z+\sqrt{2}|(z+1)|+i=0$.
23. Write the complex number $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ in polar form.
24. If z and w are two complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=$ $\frac{\pi}{2}$, then show that $\bar{z} w=-i$.

Objective Type Questions

25. Fill in the blanks of the following
(i) For any two complex numbers z_{1}, z_{2} and any real numbers a, b,

$$
\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\ldots . .
$$

(ii) The value of $\sqrt{-25} \times \sqrt{-9}$ is \qquad
(iii) The number $\frac{(1-i)^{3}}{1-i^{3}}$ is equal to \qquad
(iv) The sum of the series $i+i^{2}+i^{3}+\ldots$ upto 1000 terms is
(v) Multiplicative inverse of $1+i$ is \qquad
(vi) If z_{1} and z_{2} are complex numbers such that $z_{1}+z_{2}$ is a real number, then $z_{2}=\ldots$
(vii) $\arg (z)+\arg \bar{Z}(\bar{z} \neq 0)$ is
(viii) If $|z+4| \leq 3$, then the greatest and least values of $|z+1|$ are \qquad and
(ix) If $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$, then the locus of z is \qquad
(x) If $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$, then $z=$ \qquad
26. State True or False for the following :
(i) The order relation is defined on the set of complex numbers.
(ii) Multiplication of a non zero complex number by - i rotates the point about origin through a right angle in the anti-clockwise direction.
(iii) For any complex number z the minimum value of $|z|+|z-1|$ is 1 .
(iv) The locus represented by $|z-1|=|z-i|$ is a line perpendicular to the join of $(1,0)$ and $(0,1)$.
(v) If z is a complex number such that $z \neq 0$ and $\operatorname{Re}(z)=0$, then $\operatorname{Im}\left(z^{2}\right)=0$.
(vi) The inequality $|z-4|<|z-2|$ represents the region given by $x>3$.
(vii) Let z_{1} and z_{2} be two complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg \left(z_{1}-z_{2}\right)=0$.
(viii) 2 is not a complex number.
27. Match the statements of Column A and Column B.

ColumnA

(a) The polar form of $i+\sqrt{3}$ is
(b) The amplitude of $-1+\sqrt{-3}$ is
(c) If $|z+2|=|z-2|$, then locus of z is
(d) If $|z+2 i|=|z-2 i|$, then locus of z is
(e) Region represented by $|z+4 i| \geq 3$ is
(f) Region represented by $|z+4| \leq 3$ is

Column B

(i) Perpendicular bisector of segment joining $(-2,0)$ and $(2,0)$
(ii) On or outside the circle having centre at $(0,-4)$ and radius 3 .
(iii) $\frac{2 \pi}{3}$
(iv) Perpendicular bisector of segment joining $(0,-2)$ and $(0,2)$.
(v) $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
(vi) On or inside the circle having centre $(-4,0)$ and radius 3 units.
(g) Conjugate of $\frac{1+2 i}{1-i}$ lies in
(vii) First quadrant
(h) Reciprocal of $1-i$ lies in
(viii) Third quadrant
28. What is the conjugate of $\frac{2-i}{(1-2 i)^{2}}$?
29. If $\left|z_{1}\right|=\left|z_{2}\right|$, is it necessary that $z_{1}=z_{2}$?
30. If $\frac{\left(a^{2}+1\right)^{2}}{2 a-i}=x+i y$, what is the value of $x^{2}+y^{2}$?
31. Find z if $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$.
32. Find $\left|(1+i) \frac{(2+i)}{(3+i)}\right|$
33. Find principal argument of $(1+i \sqrt{3})^{2}$.
34. Where does z lie, if $\left|\frac{z-5 i}{z+5 i}\right|=1$.

Choose the correct answer from the given four options indicated against each of the Exercises from 35 to 50 (M.C.Q)
35. $\sin x+i \cos 2 x$ and $\cos x-i \sin 2 x$ are conjugate to each other for:
(A) $x=n \pi$
(B) $x=\left(n+\frac{1}{2}\right) \frac{\pi}{2}$
(C) $x=0$
(D) No value of x
36. The real value of α for which the expression $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real is :
(A) $(n+1) \frac{\pi}{2}$
(B) $(2 n+1) \frac{\pi}{2}$
(C) $n \pi$
(D) None of these, where $n \in \mathbf{N}$
37. If $z=x+$ iy lies in the third quadrant, then $\frac{\bar{Z}}{Z}$ also lies in the third quadrant if
(A) $x>y>0$
(B) $x<y<0$
(C) $y<x<0$
(D) $y>x>0$
38. The value of $(z+3)(\bar{z}+3)$ is equivalent to
(A) $|z+3|^{2}$
(B) $|z-3|$
(C) $z^{2}+3$
(D) None of these
39. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
(A) $x=2 n+1$
(B) $x=4 n$
(C) $x=2 n$
(D) $x=4 n+1$, where $n \in \mathrm{~N}$
40. A real value of x satisfies the equation $\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-i \beta(\alpha, \beta \in \mathbf{R})$ if $\alpha^{2}+\beta^{2}=$
(A) 1
(B) -1
(C) 2
(D) -2
41. Which of the following is correct for any two complex numbers z_{1} and z_{2} ?
(A) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(B) $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right) \cdot \arg \left(z_{2}\right)$
(C) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$
(D) $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
42. The point represented by the complex number $2-i$ is rotated about origin through an angle $\frac{\pi}{2}$ in the clockwise direction, the new position of point is:
(A) $1+2 i$
(B) $-1-2 i$
(C) $2+i$
(D) $-1+2 i$
43. Let $x, y \in \mathbf{R}$, then $x+i y$ is a non real complex number if:
(A) $x=0$
(B) $y=0$
(C) $x \neq 0$
(D) $y \neq 0$
44. If $a+i b=c+i d$, then
(A) $a^{2}+c^{2}=0$
(B) $b^{2}+c^{2}=0$
(C) $b^{2}+d^{2}=0$
(D) $a^{2}+b^{2}=c^{2}+d^{2}$
45. The complex number z which satisfies the condition $\left|\frac{i+z}{i-z}\right|=1$ lies on
(A) circle $x^{2}+y^{2}=1$
(B) the x-axis
(C) the y-axis
(D) the line $x+y=1$.
46. If z is a complex number, then
(A) $\left|z^{2}\right|>|z|^{2}$
(B) $\left|z^{2}\right|=|z|^{2}$
(C) $\left|z^{2}\right|<|z|^{2}$
(D) $\left|z^{2}\right| \geq|z|^{2}$
47. $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ is possible if
(A) $z_{2}=\bar{Z}_{1}$
(B) $z_{2}=\frac{1}{z_{1}}$
(C) $\arg \left(Z_{1}\right)=\arg \left(z_{2}\right)$
(D) $\left|z_{1}\right|=\left|z_{2}\right|$
48. The real value of θ for which the expression $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is a real number is:
(A) $n \pi+\frac{\pi}{4}$
(B) $n \pi+(-1)^{n} \frac{\pi}{4}$
(C) $2 n \pi \pm \frac{\pi}{2}$
(D) none of these.
49. The value of $\arg (x)$ when $x<0$ is:
(A) 0
(B) $\frac{\pi}{2}$
(C) π
(D) none of these
50. If $f(z)=\frac{7-z}{1-z^{2}}$, where $z=1+2 i$, then $|f(z)|$ is
(A) $\frac{|z|}{2}$
(B) $|z|$
(C) $2|z|$
(D) none of these.

