DESIGN OF THE QUESTION PAPER

MATHEMATICS - CLASS XI

Time : 3 Hours Max. Marks : 100

The weightage of marks over different dimensions of the question paper shall be as follows:

- **1.** Weigtage of Type of Questions
 - (i) Objective Type Questions
 - (ii) Short Answer Type questions
 - (viii) Long Answer Type Questions Total Questions

	Marks			
:	(10)	10 × 1 =	10	
:	(12)	12 × 4 =	48	
:	(7)	$7 \times 6 = 42$		
:	(29)		100	

2. Weightage to Different Topics

S.No.	Торіс	Objective Type	S.A. Type	L.A. Type	Total
		Questions	Questions	Questions	
1.	Sets	-	1(4)	-	4(1)
2.	Relations and Functions	-	-	1(6)	6(1)
3.	Trigonometric Functions	2(2)	1(4)	1(6)	12(4)
4.	Principle of Mathematical	-	1(4)	-	4(1)
	Induction				
5.	Complex Numbers and	2(2)	1(4)	-	6(3)
	Quadratic Equations			-	
6.	Linear Inequalities	1(1)	1(4)	-	5(2)
7.	Permutations and				
	Combinations	-	1(4)	-	4(1)
8.	Binomial Theorem	-	-	1(6)	6(1)
9.	Sequences and Series	-	1(4)	-	4(1)
10.	Straight Lines	2(2)	1(4)	1(6)	12(4)
11.	Conic Section	-	-	1(6)	6(1)
12.	Introduction to three	-	1(4)	-	4(1)
	dimensional geometry				
13.	Limits and Derivatives	1(1)	1(4)	-	5(2)
14.	Mathematical Reasoning	1(1)	1(4)	-	5(2)
15.	Statistics	-	1(4)	1(6)	10(2)
16.	Probability	1(1)	-	1(6)	7(2)
	Total	10(10)	48(12)	42(7)	100(29)

SAMPLE QUESTION PAPER Mathematics Class XI

General Instructions

- (i) The question paper consists of three parts A, B and C. Each question of each part is compulsory.
- (ii) Part A (Objective Type) consists of 10 questions of 1 mark each.
- (iii) Part B (Short Answer Type) consists of 12 questions of 4 marks each.
- (iv) Part C (Long Answer Type) consists of 7 questions of 6 marks each.

PART-A

- 1. If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$, then what is the value of $(\theta + \phi)$?
- 2. For a complex number z, what is the value of arg. z + arg. \overline{z} , $z \neq 0$?
- 3. Three identical dice are rolled. What is the probability that the same number will appear an each of them?

Fill in the blanks in questions number 4 and 5.

4. The intercept of the line 2x + 3y - 6 = 0 on the x-axis is

5.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
 is equal to

In Questions 6 and 7, state whether the given statements are True or False:

$$6. \quad x + \frac{1}{x} \ge 2, \quad \forall \ x > 0$$

7. The lines 3x + 4y + 7 = 0 and 4x + 3y + 5 = 0 are perpendicular to each other. In Question 8 to 9, choose the correct option from the given 4 options, out of which only one is correct.

8. The solution of the equation $\cos^2\theta + \sin\theta + 1 = 0$, lies in the interval

(A)
$$\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$$
 (B) $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$ (C) $\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$ (D) $\left(\frac{5\pi}{4},\frac{7\pi}{4}\right)$

9. If $z = 2 + \sqrt{3}i$, the value of $z \cdot \overline{z}$ is

(A) 7 (B) 8 (C)
$$2 - \sqrt{3}i$$
 (D) 1

10. What is the contrapositive of the statement? "If a number is divisible by 6, then it is divisible by 3.

PART - B

- 11. If $A' \cup B = U$, show by using laws of algebra of sets that $A \subset B$, where A denotes the complement of A and U is the universal set.
- 12. If $\cos x = \frac{1}{7}$ and $\cos y = \frac{13}{14}$, x, y being acute angles, prove that $x y = 60^{\circ}$.
- **13.** Using the principle of mathematical induction, show that $2^{3n} 1$ is divisible by 7 for all $n \in \mathbb{N}$.
- 14. Write $z = -4 + i 4\sqrt{3}$ in the polar form.
- **15.** Solve the system of linear inequations and represent the solution on the number line:

3x - 7 > 2(x - 6) and 6 - x > 11 - 2x

16. If $a + b + c \neq 0$ and $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P., prove that $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

- **17.** A mathematics question paper consists of 10 questions divided into two parts I and II, each containing 5 questions. A student is required to attempt 6 questions in all, taking at least 2 questions from each part. In how many ways can the student select the questions?
- **18.** Find the equation of the line which passes through the point (-3, -2) and cuts off intercepts on *x* and *y* axes which are in the ratio 4:3.
- **19.** Find the coordinates of the point R which divides the join of the points P(0, 0, 0) and Q(4, -1, -2) in the ratio 1 : 2 externally and verify that P is the mid point of RQ.

20. Differentiate $f(x) = \frac{3-x}{3+4x}$ with respect to *x*, by first principle.

- **21.** Verify by method of contradiction that $p = \sqrt{3}$ is irrational.
- 22. Find the mean deviation about the mean for the following data:

	10	30	50	70	90
f_i	4	24	28	16	8

PART C

- 23. Let $f(x) = x^2$ and $g(x) = \sqrt{x}$ be two functions defined over the set of nonnegative real numbers. Find:
- (i) (f+g)(4) (ii) (f-g)(9) (iii) (fg)(4) (iv) 24. Prove that: $\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$
- 25. Find the fourth term from the beginning and the 5th term from the end in the

expansion of $\left(\frac{x^3}{3} - \frac{3}{r^2}\right)^{10}$.

- 26. A line is such that its segment between the lines 5x y + 4 = 0 and 3x + 4y 4 = 0is bisected at the point (1, 5). Find the equation of this line.
- 27. Find the lengths of the major and minor axes, the coordinates of foci, the verti-

ces, the ecentricity and the length of the latus rectum of the ellipse $\frac{x^2}{169} + \frac{y^2}{144} = 1$.

28. Find the mean, variance and standard deviation for the following data:

Class interval:	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency:	3	7	12	15	8	3	2

29. What is the probability that

- (i) a non-leap year have 53 Sundays.
- (ii) a leap year have 53 Fridays
- (iii) a leap year have 53 Sundays and 53 Mondays.

DESIGN OF THE QUESTION PAPER 325

MARKING SCHEME MATHEMATICS CLASS XI

Q. No.	Answer	Marks	
	1.	$\frac{\pi}{4}$	1
	2.	Zero	1
	3.	$\frac{1}{36}$	-1
	4.	3	-1
	5.	$\frac{1}{2}$	1
	6.	True	1
	7.	False	1
	8.	D	1
	9.	A	1
	10.	If a number is not divisible by 3, then it is not divisible by 6.	1
		PART - B	

PART-A

PART - B

11.
$$B = B \cup \phi = B \cup (A \cap A')$$

$$= (B \cup A) \cap (B \cup A') \quad 1$$

$$= (B \cup A) \cap (A' \cup B) = (B \cup A) \cap U \text{ (Given)}$$

$$1$$

$$= B \cup A$$

$$\frac{1}{2}$$

$$\Rightarrow A \subset B.$$

$$\frac{1}{2}$$

12.
$$\cos x = \frac{1}{7} \Rightarrow \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \frac{1}{49}} = \frac{4\sqrt{3}}{7}$$

 $\cos y = \frac{13}{14} \Rightarrow \sin y = \sqrt{1 - \frac{169}{196}} = \frac{3\sqrt{3}}{14}$
 $\cos(x - y) = \cos x \cos y + \sin x \sin y$
 $= \left(\frac{1}{7}\right) \left(\frac{13}{14}\right) + \frac{4\sqrt{3}}{7} \cdot \frac{3\sqrt{3}}{14} = \frac{1}{2}$
 $\Rightarrow x - y = \frac{\pi}{3}$
13. Let P(n) : "2³ⁿ - 1 is divisible by 7"
P(1) = 2³ - 1 = 8 - 1 = 7 is divisible by 7 \Rightarrow P(1) is true.
Let P(k) be true, i.e, "2^{3k} - 1 is divisible by 7", $\therefore 2^{3k} - 1 = 7a, a \in \mathbb{Z}$
We have : $2^{3(k+1)} - 1 = 2^{3k} \cdot 2^3 - 1$
 $= (2^{3k} - 1) + 7 = 7a \cdot 8 + 7 = 7(8a + 1)$
 $\Rightarrow P(k+1) is true, hence P(n) is true $\forall_n \in \mathbb{N}$
14. Let $-4 + i 4\sqrt{3} = r(\cos \theta + i \sin \theta)$
 $\Rightarrow r \cos \theta = -4, r \sin \theta = 4\sqrt{3} \Rightarrow r^2 = 16 + 48 = 64 \Rightarrow r = 8.$ $1\frac{1}{2}$$

 $\frac{1}{2}$

1 1

1

1

$$\tan\theta = -\sqrt{3} \implies \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \qquad \qquad 1\frac{1}{2}$$

$$\therefore \quad z = -4 + i 4\sqrt{3} = 8 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$$

15. The given in equations are :

$3x - 7 > 2(x - 6) \dots (i)$	and	$6 - x > 11 - 2x \dots$ (ii)
$(i) \Longrightarrow 3x - 2x > -12 + 7$	or	$x > -5 \dots (A)$
$(ii) \Longrightarrow -x + 2x > 11 - 6 o$	or	$x > 5 \dots (B)$

From A and B, the solutions of the given system are x > 5Graphical representation is as under:

17. Following are possible choices:

Choice	Part I	Part II	
(i)	2	4	
(ii)	3	3	}
(iii)	4	2	J

...Total number of ways of selecting the questions are:

$= \left({}^{5}C_{2} \times {}^{5}C_{4} + {}^{5}C_{3} \times {}^{5}C_{3} + {}^{5}C_{4} \times {}^{5}C_{2} \right)$	$1\frac{1}{2}$
$=10 \times 5 + 10 \times 10 + 5 \times 10 = 200$	$1\frac{1}{2}$
18. Let the intercepts on <i>x</i> -axis and <i>y</i> -axis be 4 <i>a</i> , 3 <i>a</i> respectively	$\frac{1}{2}$
$\therefore \text{Equation of line is}: \frac{x}{4a} + \frac{y}{3a} = 1$ or $3x + 4y = 12a$	$1\frac{1}{2}$
$(-3, -2)$ lies on it $\Rightarrow 12a = -17$	$1\frac{1}{2}$
Hence, the equation of the line is	
3x + 4y + 17 = 0	$\frac{1}{2}$
19. Let the coordinates of R be (x, y, z)	
$\therefore x = \frac{1(4) - 2(0)}{1 - 2} = -4$	1
$y = \frac{1(-1) - 2(0)}{1 - 2} = 1$	1
$z = \frac{1(-2) - 2(0)}{1 - 2} = 2$: R is (-4, 1, 2)	1
Mid point of QR is $\left(\frac{-4+4}{2}, \frac{1-1}{2}, \frac{2-2}{2}\right)$ i.e., $(0, 0, 0)$	1
Hence verified.	
20. $f(x) = \frac{3-x}{3+4x}$: $f(x + \Delta x) = \frac{3-(x + \Delta x)}{3+4(x + \Delta x)}$	$\frac{1}{2}$
$3-r-\Lambda r$ $3-r$	
$\lim_{\Delta x \to 0} \frac{5 - x - \Delta x}{3 + 4x + 4\Delta x} - \frac{5 - x}{3 + 4x}$	
$f'(x) = \lim_{\Delta x \to 0} \frac{\int f(x) dx}{\Delta x} = \frac{\int f(x) dx}{\Delta x}$	1

DESIGN OF THE QUESTION PAPER 329

1

1

 $\frac{1}{2}$

$$= \lim_{\Delta x \to 0} \frac{(3 - x - \Delta x)(3 + 4x) - (3 + 4x + 4\Delta x)(3 - x)}{(\Delta x)(3 + 4x + 4\Delta x)(3 + 4x)} \qquad \frac{1}{2}$$
$$= \lim_{\Delta x \to 0} = \frac{9 + 12x - 3x - 4x^2 - 3\Delta x - 4x\Delta x - 9 + 3x - 12x + 4x^2 - 12\Delta x + 4x\Delta x}{(\Delta x)(3 + 4x + 4\Delta x)(3 + 4x)}$$

$$= \lim_{\Delta x \to 0} = \frac{-15\Delta x}{(\Delta x) (3 + 4x + 4\Delta x) (3 + 4x)} = \frac{-15}{(3 + 4x)^2}$$

21. Assume that p is false, i.e., $\sim p$ is true

i.e., $\sqrt{3}$ is rational

\therefore There exist two positive integers <i>a</i> and <i>b</i> such that	
$\sqrt{3} = \frac{a}{b}$, <i>a</i> and <i>b</i> are coprime	$\frac{1}{2}$
$\Rightarrow a^2 = 3b^2 \Rightarrow 3 \text{ divides } a^2 \Rightarrow 3 \text{ divides } a$	1
$\therefore a = 3c, c$ is a positive integer,	
$\therefore 9c^2 = 3b^2 \Longrightarrow b^2 = 3c^2 \Longrightarrow 3 \text{ divides } b \text{ also}$	1
\therefore 3 is a common factor of <i>a</i> and <i>b</i> which is a contradiction	
as <i>a</i> , <i>b</i> are coprimes.	1

Hence $p: \sqrt{3}$ is irrational is true.

$$\therefore \text{ Mean deviation} = \frac{1280}{80} = 16 \qquad 1$$

PART C

23.
$$(f + g) (4) = f(4) + g(4) = (4)^2 + \sqrt{4} = 16 + 2 = 18$$

 $(f - g) (9) = f(9) - g(9) = (9)^2 - \sqrt{9} = 81 - 3 = 78$
 $(f \cdot g) (4) = f(4) \cdot g(4) = (4)^2 \cdot \sqrt{(4)} = (16) (2) = 32$
 $\left(\frac{f}{g}\right) (9) = \frac{f(9)}{g(9)} = \frac{(9)^2}{\sqrt{9}} = \frac{81}{3} = 27$
14
24. $\sin 7x + \sin 5x = 2 \sin 6x \cos x$
 $\sin 9x + \sin 3x = 2 \sin 6x \cos 3x$
 $\cos 7x + \cos 5x = 2 \cos 6x \cos 3x$
 $\cos 9x + \cos 3x = 2 \cos 6x \cos 3x$
 \therefore L.H.S = $\frac{2 \sin 6x \cos x + 2 \sin 6x \cos 3x}{2 \cos 6x \cos 3x}$
 $= \frac{\sin 6x (\cos 3x + \cos x)}{\cos 6x (\cos 3x + \cos x)} = \frac{\sin 6x}{\cos 6x}$
 $= \tan 6x$
25. Using $T_{r+1} = {^nC_r x^{n-r} \cdot y^r}$ we have
 $T_4 = 10C_3 \left(\frac{x^3}{3}\right)^7 \cdot \left(\frac{-3}{x^2}\right)^3$

$$T_{4} = 10C_{3}\left(\frac{\pi}{3}\right) \cdot \left(\frac{\pi}{x^{2}}\right)$$

$$= -\frac{10.9.8}{3.2.1} \cdot \frac{1}{3^{4}} \cdot x^{15} = -\frac{40}{27}x^{15}$$
1

 5^{th} term from end = $(11 - 5 + 1) = 7^{\text{th}}$ term from beginning 1

DESIGN OF THE QUESTION PAPER 331

$$\therefore T_{7} = 10C_{6} \left(\frac{x^{3}}{3}\right)^{4} \cdot \left(\frac{3}{x^{2}}\right)^{6}$$

$$= \frac{10.9.8.7}{4.3.2.1} \cdot \frac{3^{2}}{1} = 1890$$
1
26. Let the required line intersects the line $5x - y + 4 = 0$ at (x_{1}, y_{1}) and the line $3x + 4y - 4 = 0$ at (x_{2}, y_{2}) .
 $\therefore 5x_{1} - y_{1} + 4 = 0 \Rightarrow$
 $y_{1} = 5x_{1} + 4$
 $3x_{2} + 4y_{2} - 4 = 0 \Rightarrow y_{2} = \frac{4 - 3x_{2}}{4}$
 \therefore Points of inter section are $(x_{1}, 5x_{1} + 4)$, $\left(x_{2}, \frac{4 - 3x_{2}}{4}\right)$ $\frac{1}{2}$
 $\therefore \frac{x_{1} + x_{2}}{2} = 1$ and $\frac{4 - 3x_{2}}{4} + 5x_{1} + 4$
 $\Rightarrow x_{1} + x_{2} = 2$ and $20x_{1} - 3x_{2} = 20$
 1
 $\Rightarrow x_{1} + x_{2} = 2$ and $20x_{1} - 3x_{2} = 20$
 1
 $\therefore y_{1} = \frac{222}{23}$, $y_{2} = \frac{8}{23}$
 1
 $\therefore 2y_{1} = \frac{222}{23}$, $y_{2} = \frac{8}{23}$
 1
 1
 1
or $107x - 3y - 92 = 0$
 1

27. Here
$$a^2 = 169$$
 and $b^2 = 144 \Rightarrow a = 13, b = 12$
 \therefore Length of major axis = 26
Length of minor axis = 24
Since $e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{144}{169} = \frac{25}{169} \div e = \frac{5}{13}$
 $foci are (\pm ae, 0) = (\pm 13 \cdot \frac{5}{13}, 0) = (\pm 5, 0)$
 $vertices are (\pm a, 0) = (\pm 13, 0)$
 $latus rectum = \frac{2b^2}{a} = \frac{2(144)}{13} = \frac{288}{13}$
1
28. Classes: 30-40 40-50 50-60 60-70 70-80 80-90 90-100
 $f:$ 3 7 12 15 8 3 2. $\therefore \sum f = 50$ $\frac{1}{2}$
 $x;$ 35 45 55 65 75 85 95
 $d_{i}:= \frac{x_i - 65}{10}$ -3 -2 -1 0 1 2 3
 $f_i d_i:$ -9 -14 -12 0 8 6 $6 \sum f_i d_i = -15$ 1
 $f_i d_i^2:$ $+27$ 28 $+12$ 0 8 $+12$ $+18 \sum f_i d_i^2 = 105$ 1
Mean $\overline{x} = 65 - \frac{15}{50} \times 10 = 65 - 3 = 62$
 1
Variance $e^2 = \left[\frac{105}{50} - \left(-\frac{-15}{50}\right)^2\right] \cdot 10^2 = 201$ $1\frac{1}{2}$
S.D. $\sigma = \sqrt{201} = 14.17$
1
29. (i) Total number of days in a non leap year = 365
 $= 52$ weeks $+ 1$ day

$$\therefore P(53 \text{ sun days}) = \frac{1}{7}$$

(ii) Total number of days in a leap year
$$= 366$$

= 52 weeks + 2 days

... These two days can be Monday and Tuesday, Tuesday and Wednesday, Wednesday and Thursday, Thursday and Friday, Friday and Saturday, Saturday and Sunday, Sunday and Monday

$$\therefore$$
 P(53 Fridays) = $\frac{2}{7}$

(iii) P(53 Sunday and 53 Mondays) = $\frac{1}{7}$ (from ii)

 $\frac{1}{2}$ $1\frac{1}{2}$

1

1

