SAMPLE PAPER-2015
 MATHEMATICS
 CLASS XII

Time:3Hrs

M.M:100

General Instructions

* All questions are compulsory.
* . The question paper consist of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, section B comprises of $\mathbf{1 2}$ questions of four marks each and section C comprises of 07 questions of six mark each.
* All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
* There is no overall choice. However, internal choice has been provided in 04 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
* . Use of calculators in not permitted. You may ask for logarithmic tables, if required

SECTION - A

Question numbers 1 to 10 carry 1 mark each.

1. Let $*$ be a binary operation on N given by $\mathrm{a} * \mathrm{~b}=\operatorname{HCF}(\mathrm{a}, \mathrm{b})$ for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{N}$. Find $5 * 7$.
2. Find unit vector in the direction of the vector $\vec{a}=\mathrm{i}+\mathrm{j}+2 \mathrm{k}$
3. For a 2×2 matrix $A=\left[a_{i j}\right]$,Whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{(i+2 j)^{w}}{4}$, Write a_{22}.
4. Evaluate: $\int \frac{(x+1)(x+\log x)^{2}}{x} \mathrm{dx}$
5. If

$$
\Delta=\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array} \text {, Write the minor of the element } \mathrm{a}_{22} .
$$

6.For what value of $\mathrm{p}, \begin{array}{cc}1+p & 7 \\ 3-x & 8\end{array}$ is a singular matrix?
7. Write the distance between two planes: $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=5$ and $4 \mathrm{x}+6 \mathrm{y}+8 \mathrm{z}=10$.
8. If α, β, γ are the angles which make with the positive direction of axes. Find the value of $\cos 2 a+\cos 2 b+\cos 2 y$.
9. Find the principal value of $\tan ^{-1} \sqrt{3-\sec ^{-1}(-2)}$.

10 Evaluate $\int e^{3 \log x} \cdot x^{4} \mathrm{dx}$

SECTION - B

Question numbers 11 to 22 carry 4 marks each.

11. Let * be a binary operation on Q Defined by $\mathrm{a}^{*} \mathrm{~b}=\frac{2 a b}{5}$. Show that * is commutative as well as associative. Also find it's identify element, If it exists.
12. Solve for $\mathrm{x}: \tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x=0 x>0$

OR
Prove that $\cos \left[\tan ^{-1}\left\{\sin \left(\cot ^{-1} \mathrm{x}\right)\right\}\right]=\sqrt{\frac{1+x^{2}}{2+x^{2}}}$
13. Find the value of k so that f is continuous at the indicated point

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
\frac{1-\cos 4 x}{x^{2}} \quad x<0 \\
a \quad x=0 \\
\frac{\sqrt{x}}{\sqrt{16+\sqrt{x-4}}} x>0
\end{array}\right.
$$

If $f(x)$ is continuous at $x=0$, find the value of a.
14. Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is (a) strictly increasing (b) strictly decreasing

OR
Use differential to appropriate $\sqrt{36.6}$
15. Prove that $\left.\left|\begin{array}{ccc}a & b & y \\ a^{2} & b^{2} & y^{2} \\ B+y & a+y & a+b\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{y})(\mathrm{y}-\mathrm{a})\right)(\mathrm{a}+\mathrm{b}+\mathrm{y})$
16. If $\mathrm{y}=3 \cos (\log \mathrm{x})+4 \sin (\log \mathrm{x})$, Show that: $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+\mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$

OR
If $\sin \mathrm{y}=\mathrm{x} \sin (\mathrm{a}+\mathrm{y})$, Prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$
17. If the lines $\frac{x-1}{3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular to each other. Find the value of k .
18. The probability of a shooter hitting a target is $\frac{3}{4}$. How many maximum numbers of times must he/she fire so that the probability of hitting the target at least once is more than 0.99 ?
19. Show that $(a-b) x(a+b)=2(a X b)$
20. Find the general solution of the differential equation $y d x+\left(x-y^{2}\right) d y=0$
21. Find the particular solution of the differential equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ is given by $(x+y+1)=A(1-x-y-2 x y)$, where A is parameter.
22. Evaluate: $\int \frac{1}{\sin x \cos ^{3} x} d x \quad$ OR Evaluate: $\int \frac{1}{x\left(x^{4}-1\right)} d x$

Question numbers 23 to 29 carry 6 marks each

23.Find the coordinate of foot of perpendicular drawn from point $(1,6,3)$ on the line $\frac{x}{1}$ $=\frac{y-1}{2}=\frac{z-2}{3}$ and also find the image of the point $(1,6,3)$ in the given line.

OR
Find the vector equation of the plane passing through the intersection of planes r. $(2 \mathrm{i}-7 \mathrm{j}+4 \mathrm{k})=3$ and r. $(3 \mathrm{i}-5 \mathrm{j}+4 \mathrm{k})+11=0$ and passing through the point $(-2$, 1,3)
24. If a machine is correctly set up, it produces 90% acceptable items. If it is incorrectly set up, it produces only 40% acceptable items. Past experience shows that 80% of the set ups are correctly done. If after a certain set up, the
machine produces 2 acceptable items, Find the probability that the machine is correctly set up.
25. Find the area of the region $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$
26. Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} \mathrm{dx}$
27. For the matrix $A=\left|\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right|$, Find A^{-1}. Using A^{-1} solve the system of equations $2 x-3 y+5 z=11,3 x+2 y-4 z=-5$ and $x+y-2 z=-3$
28. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.

OR

Find the maximum areas of an isosceles triangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its vertex at one end
29. There are two factories located one at place P and the other at place Q . From these locations, a certain commodity is to be delivered to each of the three depots situated at A , B and C. The weekly requirements of the depots are respectively 5 , 5 and 4 units of the commodity while the production capacity of the factories at P and Q are respectively 8 and 6 units. The costs of transportation per unit are given below:

From/To	Number of hours required on machines		
	A	B	C
P	160	100	150
Q	100	120	100

How many units should be transported from each factory to each depot in order that the transportation cost is minimum? What will be the minimum transportation cost?

