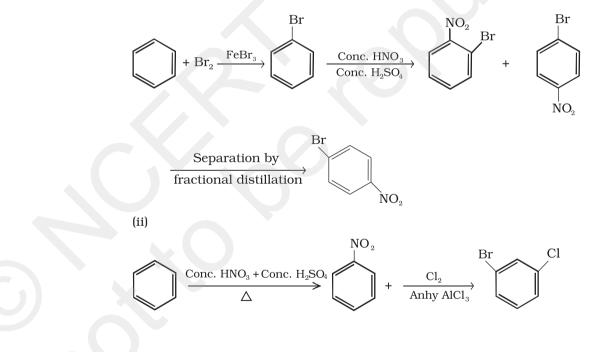
Answer to Some Selected Problems

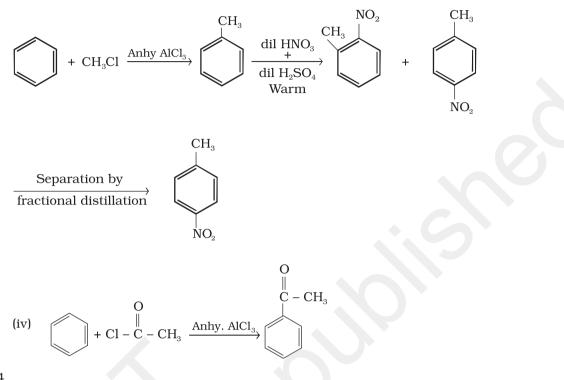
UNIT 8

8.25 15 g

UNIT 12

- 12.32 Mass of carbon dioxide formed = 0.505 g Mass of water formed = 0.0864 g
- 12.33 % fo nitrogen = 56
- 12.34 % of chlorine = 37.57
- 12.35 % of sulphur = 19.66


UNIT 13


13.1	Due to the side reaction in termin free radicals.	nati	ion step by the combination of two $\ensuremath{\mathrm{CH}_3}$
13.2	(a) 2-Methyl-but-2-ene	(b)	Pent-1-ene-3-yne
	(c) Buta-1, 3-diene ((d)	4-Phenylbut-1-ene
	(e) 2-Methylphenol (f)	5-(2-Methylpropyl)-decane
	(g) 4-Ethyldeca –1,5,8- triene		
13.3	(a) (i) $CH_2 = CH - CH_2 - CH_3$		But-1-ene
	(ii) $CH_3 - CH_2 = CH - CH_3$		But-2-ene
	(iii) $CH_2^3 = C - CH_3^3$		2-Methylpropene
	CH_3		
	(b) (i) $HC \equiv C - CH_2 - CH_2 - CH_3$	3	Pent-1-yne
	(ii) $CH_3 - C \equiv C - CH_2 - CH_3$		Pent-2-yne
	(iii) $CH_3 - CH - C \equiv CH$		3-Methylbut-1-yne
	l CH ₂		
	5		
13.4	(i) Ethanal and propanal		(ii) Butan-2-one and pentan-2-one
	(iii) Methanal and pentan-3-one		(iv) Propanal and benzaldehyde
13.5	3-Ethylpent-2-ene		
13.6	But-2-ene		
13.7	4-Ethylhex-3-ene		
	$\begin{array}{c} \mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{C} = \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_3 \\ \end{array}$		
	CH_2 – CH_3		

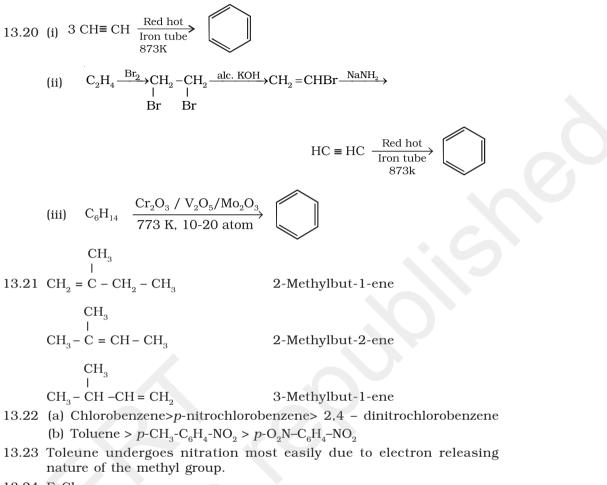
The cis form will have higher boiling point due to more polar nature leading to stronger intermolecular dipole-dipole interaction, thus requiring more heat energy to separate them.

- 13.10 Due to resonance
- 13.11 Planar, conjugated ring system with delocalisation of (4n+2) π electrons, where, n is an integer
- 13.12 Lack of delocalisation of $\ (4n$ +2) π electrons in the cyclic system.
- 13.13 (i)

415

13.14

(iii)


1°

- 15 H attached to 1° carbons
 - 4 H attached to 2° carbons
 - 1 H attached to 3° carbons
- 13.15 More the branching in alkane, lower will be the boiling point.
- 13.16 Refer to addition reaction of HBr to unsymmetrical alkenes in the text.

13.17
$$CH_3 - C = O$$
 $CH_3 - C = O$ CHO
 \downarrow \downarrow and \downarrow
 $CH_3 - C = O$ $H - C = O$ CHO

All the three products cannot be obtained by any one of the Kekulé's structures. This shows that benzene is a resonance hybrid of the two resonating structures.

- 13.18 H C = C H > C_6H_6 > C_6H_{14} . Due to maximum *s* orbital character in enthyne (50 per cent) as compared to 33 per cent in benzene and 25 per cent in *n*-hexane.
- 13.19 Due to the presence of 6 π electrons, benzene behaves as a rich source of electrons thus being easily attacked by reagents deficient in electrons.

- 13.24 FeCl₃
- 13.25 Due to the formation of side products. For example, by starting with 1-bromopropane and 1-bromobutane, hexane and octane are the side products besides heptane.