Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school must be linked to their life outside the school. This principle marks a departure from the legacy of bookish learning which continues to shape our system and causes a gap between the school, home and community. The syllabi and textbooks developed on the basis of NCF signify an attempt to implement this basic idea. They also attempt to discourage rote learning and the maintenance of sharp boundaries between different subject areas. We hope these measures will take us significantly further in the direction of a child-centred system of education outlined in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers will take to encourage children to reflect on their own learning and to pursue imaginative activities and questions. We must recognise that, given space, time and freedom, children generate new knowledge by engaging with the information passed on to them by adults. Treating the prescribed textbook as the sole basis of examination is one of the key reasons why other resources and sites of learning are ignored. Inculcating creativity and initiative is possible if we perceive and treat children as participants in learning, not as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning. Flexibility in the daily time-table is as necessary as rigour in implementing the annual calendar so that the required number of teaching days are actually devoted to teaching. The methods used for teaching and evaluation will also determine how effective this textbook proves for making children’s life at school a happy experience, rather than a source of stress or boredom. Syllabus designers have tried to address the problem of curricular burden by restructuring and reorienting knowledge at different stages with greater consideration for child psychology and the time available for teaching. The textbook attempts to enhance this endeavour by giving higher priority and space to opportunities for contemplation and wondering, discussion in small groups, and activities requiring hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the hard work done by the textbook development committee responsible for this book. We wish to thank the Chairperson of the advisory group in Science and Mathematics, Professor J.V. Narlikar and the Chief Advisors for this book, Professor P. Sinclair of IGNOU, New Delhi and Professor G.P. Dikshit (Retd.) of Lucknow University, Lucknow for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals for making this possible. We are indebted to the institutions and organisations which have generously permitted us to draw upon their resources, material and personnel. We are especially grateful to the members of the National Monitoring Committee, appointed by the Department of Secondary and Higher Education, Ministry of Human Resource Development under the Chairpersonship of Professor Mrinal Miri and Professor G.P. Deshpande, for their valuable time and contribution. As an organisation committed to systemic reform and continuous improvement in the quality of its products, NCERT welcomes comments and suggestions which will enable us to undertake further revision and refinement.

Director
New Delhi National Council of Educational Research and Training
15 November 2006
Preface

Through the years, from the time of the Kothari Commission, there have been several committees looking at ways of making the school curriculum meaningful and enjoyable for the learners. Based on the understanding developed over the years, a National Curriculum Framework (NCF) was finalised in 2005. As part of this exercise, a National Focus Group on Teaching of Mathematics was formed. Its report, which came in 2005, highlighted a constructivist approach to the teaching and learning of mathematics.

The essence of this approach is that children already know, and do some mathematics very naturally in their surroundings, before they even join school. The syllabus, teaching approach, textbooks etc., should build on this knowledge in a way that allows children to enjoy mathematics, and to realise that mathematics is more about a way of reasoning than about mechanically applying formulae and algorithms. The students and teachers need to perceive mathematics as something natural and linked to the world around us. While teaching mathematics, the focus should be on helping children to develop the ability to particularise and generalise, to solve and pose meaningful problems, to look for patterns and relationships, and to apply the logical thinking behind mathematical proof. And, all this in an environment that the children relate to, without overloading them.

This is the philosophy with which the mathematics syllabus from Class I to Class XII was developed, and which the textbook development committee has tried to realise in the present textbook. More specifically, while creating the textbook, the following broad guidelines have been kept in mind.

- The matter needs to be linked to what the child has studied before, and to her experiences.
- The language used in the book, including that for ‘word problems’, must be clear, simple and unambiguous.
- Concepts/processes should be introduced through situations from the children’s environment.
- For each concept/process give several examples and exercises, but not of the same kind. This ensures that the children use the concept/process again and again, but in varying contexts. Here ‘several’ should be within reason, not overloading the child.
- Encourage the children to see, and come out with, diverse solutions to problems.
As far as possible, give the children motivation for results used.
All proofs need to be given in a non-didactic manner, allowing the learner to see the flow of reason. The focus should be on proofs where a short and clear argument reinforces mathematical thinking and reasoning.
Whenever possible, more than one proof is to be given.
Proofs and solutions need to be used as vehicles for helping the learner develop a clear and logical way of expressing her arguments.
All geometric constructions should be accompanied by an analysis of the construction and a proof for the steps taken to do the required construction. Accordingly, the children would be trained to do the same while doing constructions.
Add such small anecdotes, pictures, cartoons and historical remarks at several places which the children would find interesting.
Include optional exercises for the more interested learners. These would not be tested in the examinations.
Give answers to all exercises, and solutions/hints for those that the children may require.
Whenever possible, propagate constitutional values.

As you will see while studying this textbook, these points have been kept in mind by the Textbook Development Committee. The book has particularly been created with the view to giving children space to explore mathematics and develop the abilities to reason mathematically. Further, two special appendices have been given — Proofs in Mathematics, and Mathematical Modelling. These are placed in the book for interested students to study, and are only optional reading at present. These topics may be considered for inclusion in the main syllabi in due course of time.

As in the past, this textbook is also a team effort. However, what is unusual about the team this time is that teachers from different kinds of schools have been an integral part at each stage of the development. We are also assuming that teachers will contribute continuously to the process in the classroom by formulating examples and exercises contextually suited to the children in their particular classrooms. Finally, we hope that teachers and learners would send comments for improving the textbook to the NCERT.

Parvin Sinclair
G.P. Dikshit
Chief Advisors
Textbook Development Committee
Textbook Development Committee

Chairperson, Advisory Group in Science and Mathematics

J.V. Narlikar, Emeritus Professor, Inter-University Centre for Astronomy & Astrophysics (IUCAA), Ganeshkhind, Pune University, Pune

Chief Advisors

P. Sinclair, Professor of Mathematics, IGNOU, New Delhi
G.P. Dikshit, Professor (Retd.), Lucknow University, Lucknow

Chief Coordinator

Hukum Singh, Professor and Head (Retd.), DESM, NCERT, New Delhi

Members

Anjali Lal, PGT, DAV Public School, Sector-14, Gurgaon
A.K. Wazalwar, Professor and Head, DESM, NCERT
B.S. Upadhyaya, Professor, RIE, Mysore
Jayanti Datta, PGT, Salwan Public School, Gurgaon
Mahendra Shanker, Lecturer (S.G.) (Retd.), NCERT
Manica Aggarwal, Green Park, New Delhi
N.D. Shukla, Professor (Retd.), Lucknow University, Lucknow
Ram Avtar, Professor (Retd.) & Consultant, DESM, NCERT
Rama Balaji, TGT, K.V., MEG & Centre, St. John’s Road, Bangalore
S. Jagdeeshan, Teacher and Member, Governing Council, Centre for Learning, Bangalore
S.K.S. Gautam, Professor (Retd.), DESM, NCERT
Vandita Kalra, Lecturer, Sarvodaya Kanya Vidyalaya, Vikaspuri District Centre, Delhi
V.A. Sujatha, TGT, Kendriya Vidyalaya No. 1, Vasco, Goa
V. Madhavi, TGT, Sanskriti School, Chankyapuri, New Delhi

Member-coordinator

R.P. Maurya, Associate Professor, DESM, NCERT, New Delhi
Acknowledgements

The Council gratefully acknowledges the valuable contributions of the following participants of the Textbook Review Workshop:

Mala Mani, TGT, Amity International School, Sector-44, Noida; Meera Mahadevan, TGT, Atomic Energy Central School, No. 4, Anushakti Nagar, Mumbai; Rashmi Rana, TGT, D.A.V. Public School, Pushpanjali Enclave, Pitampura, Delhi; Mohammad Qasim, TGT, Anglo Arabic Senior Secondary School, Ajmeri Gate, Delhi; S.C. Rauto, TGT, Central School for Tibetans, Happy Valley, Mussoorie; Rakesh Kaushik, TGT, Sainik School, Kunjpura, Karnal; Ashok Kumar Gupta, TGT, Jawahar Navodaya Vidyalaya, Dudhnoi, Distt. Goalpara; Sankar Misra, TGT, Demonstration Multipurpose School, RIE, Bhubaneswar; Uaday Singh, Lecturer, Department of Mathematics, B.H.U., Varanasi; B.R. Handa, Emeritus Professor, IIT, New Delhi; Monika Singh, Lecturer, Sri Ram College (University of Delhi), Lajpat Nagar, New Delhi; G. Sri Hari Babu, TGT, Jawahar Navodaya Vidyalaya, Sirpur, Kagaz Nagar, Adilabad; Ajay Kumar Singh, TGT, Ramjas Sr. Secondary School No. 3, Chandni Chowk, Delhi; Mukesh Kumar Agrawal, TGT, S.S.A.P.G.B.S.S. School, Sector-V, Dr Ambedkar Nagar, New Delhi.

Special thanks are due to Professor Hukum Singh, Head (Retd.), DESM, NCERT for his support during the development of this book.

The Council acknowledges the efforts of Deepak Kapoor, Incharge, Computer Station; Purnendu Kumar Barik, Copy Editor; Naresh Kumar and Nargis Islam, D.T.P. Operators; Yogita Sharma, Proof Reader.

The Contribution of APC-Office, administration of DESM, Publication Department and Secretariat of NCERT is also duly acknowledged.
Contents

Foreword iii
Preface v

1. Real Numbers 1
 1.1 Introduction 1
 1.2 Euclid’s Division Lemma 2
 1.3 The Fundamental Theorem of Arithmetic 7
 1.4 Revisiting Irrational Numbers 11
 1.5 Revisiting Rational Numbers and Their Decimal Expansions 15
 1.6 Summary 18

2. Polynomials 20
 2.1 Introduction 20
 2.2 Geometrical Meaning of the Zeroes of a Polynomial 21
 2.3 Relationship between Zeroes and Coefficients of a Polynomial 28
 2.4 Division Algorithm for Polynomials 33
 2.5 Summary 37

3. Pair of Linear Equations in Two Variables 38
 3.1 Introduction 38
 3.2 Pair of Linear Equations in Two Variables 39
 3.3 Graphical Method of Solution of a Pair of Linear Equations 44
 3.4 Algebraic Methods of Solving a Pair of Linear Equations 50
 3.4.1 Substitution Method 50
 3.4.2 Elimination Method 54
 3.4.3 Cross-Multiplication Method 57
 3.5 Equations Reducible to a Pair of Linear Equations in Two Variables 63
 3.6 Summary 69

4. Quadratic Equations 70
 4.1 Introduction 70
 4.2 Quadratic Equations 71
4.3 Solution of a Quadratic Equation by Factorisation 74
4.4 Solution of a Quadratic Equation by Completing the Square 76
4.5 Nature of Roots 88
4.6 Summary 91
5. Arithmetic Progressions 93
 5.1 Introduction 93
 5.2 Arithmetic Progressions 95
 5.3 nth Term of an AP 100
 5.4 Sum of First n Terms of an AP 107
 5.5 Summary 116
6. Triangles 117
 6.1 Introduction 117
 6.2 Similar Figures 118
 6.3 Similarity of Triangles 123
 6.4 Criteria for Similarity of Triangles 129
 6.5 Areas of Similar Triangles 141
 6.6 Pythagoras Theorem 144
 6.7 Summary 154
7. Coordinate Geometry 155
 7.1 Introduction 155
 7.2 Distance Formula 156
 7.3 Section Formula 162
 7.4 Area of a Triangle 168
 7.5 Summary 172
8. Introduction to Trigonometry 173
 8.1 Introduction 173
 8.2 Trigonometric Ratios 174
 8.3 Trigonometric Ratios of Some Specific Angles 181
 8.4 Trigonometric Ratios of Complementary Angles 187
 8.5 Trigonometric Identities 190
 8.6 Summary 194
9. Some Applications of Trigonometry 195

- 9.1 Introduction 195
- 9.2 Heights and Distances 196
- 9.3 Summary 205

10. Circles 206

- 10.1 Introduction 206
- 10.2 Tangent to a Circle 207
- 10.3 Number of Tangents from a Point on a Circle 209
- 10.4 Summary 215

11. Constructions 216

- 11.1 Introduction 216
- 11.2 Division of a Line Segment 216
- 11.3 Construction of Tangents to a Circle 220
- 11.4 Summary 222

12. Areas Related to Circles 223

- 12.1 Introduction 223
- 12.2 Perimeter and Area of a Circle — A Review 224
- 12.3 Areas of Sector and Segment of a Circle 226
- 12.4 Areas of Combinations of Plane Figures 231
- 12.5 Summary 238

13. Surface Areas and Volumes 239

- 13.1 Introduction 239
- 13.2 Surface Area of a Combination of Solids 240
- 13.3 Volume of a Combination of Solids 245
- 13.4 Conversion of Solid from One Shape to Another 248
- 13.5 Frustum of a Cone 252
- 13.6 Summary 258

14. Statistics 260

- 14.1 Introduction 260
- 14.2 Mean of Grouped Data 260
- 14.3 Mode of Grouped Data 272
14.4 Median of Grouped Data 277
14.5 Graphical Representation of Cumulative Frequency Distribution 289
14.6 Summary 293

15. Probability 295
15.1 Introduction 295
15.2 Probability — A Theoretical Approach 296
15.3 Summary 312

Appendix A1 : Proofs in Mathematics 313
A1.1 Introduction 313
A1.2 Mathematical Statements Revisited 313
A1.3 Deductive Reasoning 316
A1.4 Conjectures, Theorems, Proofs and Mathematical Reasoning 318
A1.5 Negation of a Statement 323
A1.6 Converse of a Statement 326
A1.7 Proof by Contradiction 329
A1.8 Summary 333

Appendix A2 : Mathematical Modelling 334
A2.1 Introduction 334
A2.2 Stages in Mathematical Modelling 335
A2.3 Some Illustrations 339
A2.4 Why is Mathematical Modelling Important? 343
A2.5 Summary 344

Answers/Hints 345